我在Visual Studio(C ++)中开发了线性数学编程模型,并使用Cplex(12.7.1)解决了该问题。但是我注意到Cplex的某些奇怪行为。对于某些问题实例,Cplex提供了一种可行的(非最佳解决方案),可以通过消除某些约束下的松弛来轻松地对其进行改进。数学模型的简化示例如下:
最小化A
以
为准cX – dY <= A
dY – cX <= A
X,Y二进制,A连续,c,d参数
鉴于所提供的可行(非最佳)解决方案中的X和Y值,两个约束均存在松弛。给定决策变量X和Y的值,可以很容易地减少连续变量A(即,通过消除至少两个约束中的一个约束)。我了解Cplex提供了一个解决方案,考虑到问题的限制,该方案是可行的。但是,当在一个分支中分支并求解单纯形以创建可行的解决方案时,为什么这种单纯形的计算会导致这两个非约束性约束?我该怎么做才能确保Cplex始终提供至少两个约束之一绑定的解决方案?
这些尝试都没有解决问题。
int nozones = 2;
int notrucks = 100;
int notimeslots = 24;
IloEnv env;
IloModel model(env);
IloExpr objective(env);
IloExpr constraint(env);
NumVar3Matrix X(env, notimeslots);
for (i = 0; i < notimeslots; i++)
{
X[i] = NumVarMatrix(env, notrucks);
for (l = 0; l < notrucks; l++)
{
X[i][l] = IloNumVarArray(env, nozones);
for (k = 0; k < nozones; k++)
{
X[i][l][k] = IloNumVar(env, 0, 1, ILOINT);
}
}
}
NumVar3Matrix A(env, nozones);
for (k = 0; k < nozones; k++)
{
A[k] = NumVarMatrix(env, notimeslots);
for (int i0 = 0; i0 < notimeslots; i0++)
{
A[k][i0] = IloNumVarArray(env, notimeslots);
for (int i1 = 0; i1 < notimeslots; i1++)
{
A[k][i0][i1] = IloNumVar(env, 0, 9999, ILOFLOAT);
}
}
}
//objective function
for (int k0 = 0; k0 < nozones; k0++)
{
for (int i0 = 0; i0 < notimeslots; i0++)
{
for (int i1 = 0; i1 < notimeslots; i1++)
{
if (i0 > i1)
{
double denominator = (PP.mean[k0] * (double)(notimeslots*notimeslots)); //parameter
objective += A[k0][i0][i1] / denominator;
}
}
}
}
model.add(IloMinimize(env, objective));
//Constraints
for (int k0 = 0; k0 < nozones; k0++)
{
for (int i0 = 0; i0 < notimeslots; i0++)
{
for (int i1 = 0; i1 < notimeslots; i1++)
{
if (i0 > i1)
{
for (int l0 = 0; l0 < notrucks; l0++)
{
constraint += c[k0][l0] * X[i0][l0][k0];
constraint -= d[k0][l0] * X[i1][l0][k0];
}
constraint -= A[k0][i0][i1];
model.add(constraint <= 0);
constraint.clear();
for (int l0 = 0; l0 < notrucks; l0++)
{
constraint -= c[k0][l0] * X[i0][l0][k0];
constraint += d[k0][l0] * X[i1][l0][k0];
}
constraint -= A[k0][i0][i1];
model.add(constraint <= 0);
constraint.clear();
}
}
}
}
请在下面找到日志:
CPXPARAM_TimeLimit 10
CPXPARAM_Threads 3
CPXPARAM_MIP_Tolerances_MIPGap 9.9999999999999995e-08
CPXPARAM_MIP_Strategy_CallbackReducedLP 0
Tried aggregator 2 times.
MIP Presolve eliminated 412 rows and 384 columns.
MIP Presolve modified 537 coefficients.
Aggregator did 21 substitutions.
Reduced MIP has 595 rows, 475 columns, and 10901 nonzeros.
Reduced MIP has 203 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.09 sec. (8.97 ticks)
Found incumbent of value 1254245.248934 after 0.11 sec. (10.55 ticks)
Probing time = 0.00 sec. (0.39 ticks)
Tried aggregator 1 time.
Reduced MIP has 595 rows, 475 columns, and 10901 nonzeros.
Reduced MIP has 203 binaries, 272 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.03 sec. (4.47 ticks)
Probing time = 0.00 sec. (0.55 ticks)
Clique table members: 51.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 3 threads.
Root relaxation solution time = 0.05 sec. (15.41 ticks)
Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap
* 0+ 0 1254245.2489 13879.8564 98.89%
* 0+ 0 1225612.3997 13879.8564 98.87%
* 0+ 0 1217588.5782 13879.8564 98.86%
* 0+ 0 1209564.7566 13879.8564 98.85%
* 0+ 0 1201540.9350 13879.8564 98.84%
* 0+ 0 1193517.1135 13879.8564 98.84%
* 0+ 0 1185493.2919 13879.8564 98.83%
* 0+ 0 1177589.9029 13879.8564 98.82%
0 0 334862.8273 139 1177589.9029 334862.8273 387 71.56%
* 0+ 0 920044.8009 334862.8273 63.60%
0 0 335605.5047 162 920044.8009 Cuts: 248 516 63.52%
* 0+ 0 732802.2256 335605.5047 54.20%
* 0+ 0 669710.6005 335605.5047 49.89%
0 0 336504.5144 153 669710.6005 Cuts: 248 617 49.75%
0 0 338357.1160 172 669710.6005 Cuts: 248 705 49.48%
0 0 338950.0580 178 669710.6005 Cuts: 248 796 49.39%
0 0 339315.6848 189 669710.6005 Cuts: 248 900 49.33%
0 0 339447.9616 193 669710.6005 Cuts: 248 977 49.31%
0 0 339663.6342 203 669710.6005 Cuts: 228 1091 49.28%
0 0 339870.9021 205 669710.6005 Cuts: 210 1154 49.25%
* 0+ 0 531348.6042 339870.9021 36.04%
0 0 340009.1008 207 531348.6042 Cuts: 241 1225 35.87%
0 0 340855.1873 202 531348.6042 Cuts: 231 1318 35.85%
0 0 341229.8328 202 531348.6042 Cuts: 248 1424 35.78%
0 0 341409.5769 200 531348.6042 Cuts: 248 1502 35.75%
0 0 341615.2848 286 531348.6042 Cuts: 248 1568 35.71%
0 0 341704.8400 300 531348.6042 Cuts: 225 1626 35.69%
0 0 341805.5681 222 531348.6042 Cuts: 191 1687 35.67%
* 0+ 0 489513.3319 341805.5681 30.17%
0 0 341834.6048 218 489513.3319 Cuts: 169 1739 30.17%
0 0 341900.1390 228 489513.3319 Cuts: 205 1788 30.16%
0 0 341945.8278 211 489513.3319 Cuts: 197 1855 30.15%
* 0+ 0 489468.1697 341945.8278 30.14%
0 2 341945.8278 202 489468.1697 341945.8278 1855 30.14%
Elapsed time = 5.53 sec. (446.68 ticks, tree = 0.01 MB, solutions = 14)
* 199+ 154 484741.1904 341968.3817 29.45%
263 222 342462.1403 198 484741.1904 341968.3817 12287 29.45%
* 550+ 420 461678.3486 341993.1725 25.92%
555 403 411858.3790 117 461678.3486 341993.1725 21480 25.92%
* 566+ 319 439985.4277 341993.1725 22.27%
660 321 350009.7742 289 439985.4277 341993.1725 16141 22.27%
* 670+ 427 438464.9662 342020.7550 22.00%
Flow cuts applied: 15
Mixed integer rounding cuts applied: 65
Zero-half cuts applied: 6
Gomory fractional cuts applied: 15
Root node processing (before b&c):
Real time = 5.53 sec. (446.21 ticks)
Parallel b&c, 3 threads:
Real time = 4.50 sec. (1093.39 ticks)
Sync time (average) = 0.59 sec.
Wait time (average) = 0.04 sec.
------------
Total (root+branch&cut) = 10.03 sec. (1539.61 ticks)
预期结果是,在Cplex提供的所有可行解决方案中,对于至少在其中成对绑定的所有约束对(无懈可击)。
答案 0 :(得分:2)
我认为CPLEX由于达到您的时间限制而中止,因此该解决方案未被证明是最佳的。这是正确的吗?
这不是错误。对于用户终止的运行,CPLEX不提供此类保证。找到满足用户请求/设置的解决方案后,CPLEX会尽快停止。
要获得所需的行为,则可以在C API中使用:
解决固定问题。由于产生的问题是纯LP,因此您现在可以致电:
并且如链接中所述,您可以将solveFixed()用于更高级别的API。
丹尼尔(Daniel)也在这里回答了您的交叉帖子:
如果不清楚,请在IBM开发人员论坛上回复。谢谢
答案 1 :(得分:0)
我想我知道答案。
Cplex的启发式方法有时会找到LP非最佳的整数解。这是此行为的example。这确实会产生不连贯的解决方案。许多MIP建模构造(绝对值,最小/最大公式等)都假定所有整数解都是LP最优的。最好Cplex将清理这些解决方案。
以下是我用于此问题的解决方法。 Cplex停止使用MIP解决方案后,总是修复所有离散变量并将其解析为LP。这将清除LP非最佳的整数解决方案。一个可能的例外:如果问题被证明是全局最优的,那么可能就不需要(我对此有些偏执,所以我总是添加最终的LP)。我尚未与其他求解器一起看到这种行为。