为什么Cplex提供的解决方案的约束比较宽松?

时间:2019-04-05 09:01:29

标签: c++ optimization mathematical-optimization cplex

我在Visual Studio(C ++)中开发了线性数学编程模型,并使用Cplex(12.7.1)解决了该问题。但是我注意到Cplex的某些奇怪行为。对于某些问题实例,Cplex提供了一种可行的(非最佳解决方案),可以通过消除某些约束下的松弛来轻松地对其进行改进。数学模型的简化示例如下:

最小化A

为准

cX – dY <= A

dY – cX <= A

X,Y二进制,A连续,c,d参数

鉴于所提供的可行(非最佳)解决方案中的X和Y值,两个约束均存在松弛。给定决策变量X和Y的值,可以很容易地减少连续变量A(即,通过消除至少两个约束中的一个约束)。我了解Cplex提供了一个解决方案,考虑到问题的限制,该方案是可行的。但是,当在一个分支中分支并求解单纯形以创建可行的解决方案时,为什么这种单纯形的计算会导致这两个非约束性约束?我该怎么做才能确保Cplex始终提供至少两个约束之一绑定的解决方案?

  • 我尝试不松懈地包含解决方案,以测试Cplex是否将预期的解决方案识别为可行的解决方案(即,为了测试用C ++编程的数学模型是否无错误);
  • 我试图提高Cplex的容差(IloCplex :: Param :: MIP :: Tolerances :: MIPGap);
  • 我试图切换Cplex(IloCplex :: Param :: MIP :: Strategy :: Search)的动态搜索。

这些尝试都没有解决问题。

int nozones = 2;
int notrucks = 100;
int notimeslots = 24;
IloEnv env; 
IloModel model(env);
IloExpr objective(env);
IloExpr constraint(env);

NumVar3Matrix X(env, notimeslots);
for (i = 0; i < notimeslots; i++)
{
    X[i] = NumVarMatrix(env, notrucks);
    for (l = 0; l < notrucks; l++)
    {
        X[i][l] = IloNumVarArray(env, nozones);
        for (k = 0; k < nozones; k++)
        {
            X[i][l][k] = IloNumVar(env, 0, 1, ILOINT);
        }
    }
}

NumVar3Matrix A(env, nozones);
for (k = 0; k < nozones; k++)
{
    A[k] = NumVarMatrix(env, notimeslots);
    for (int i0 = 0; i0 < notimeslots; i0++)
    {
        A[k][i0] = IloNumVarArray(env, notimeslots);
        for (int i1 = 0; i1 < notimeslots; i1++)
        {
            A[k][i0][i1] = IloNumVar(env, 0, 9999, ILOFLOAT); 
        }
    }
}

//objective function
for (int k0 = 0; k0 < nozones; k0++)
{
    for (int i0 = 0; i0 < notimeslots; i0++)
    {
        for (int i1 = 0; i1 < notimeslots; i1++)
        {
            if (i0 > i1)
            {
                double denominator = (PP.mean[k0] * (double)(notimeslots*notimeslots)); //parameter
                objective += A[k0][i0][i1] / denominator;
            }
        }
    }
}

model.add(IloMinimize(env, objective)); 

//Constraints
for (int k0 = 0; k0 < nozones; k0++)
{
    for (int i0 = 0; i0 < notimeslots; i0++)
    {
        for (int i1 = 0; i1 < notimeslots; i1++)
        {
            if (i0 > i1)
            {
                for (int l0 = 0; l0 < notrucks; l0++)
                {
                    constraint += c[k0][l0] * X[i0][l0][k0];
                    constraint -= d[k0][l0] * X[i1][l0][k0];    
                }

                constraint -= A[k0][i0][i1];
                model.add(constraint <= 0);
                constraint.clear();

                for (int l0 = 0; l0 < notrucks; l0++)
                {
                    constraint -= c[k0][l0] * X[i0][l0][k0];
                    constraint += d[k0][l0] * X[i1][l0][k0];                
                }
                constraint -= A[k0][i0][i1];
                model.add(constraint <= 0);
                constraint.clear();
            }
        }
    }
}

请在下面找到日志:

CPXPARAM_TimeLimit                               10
CPXPARAM_Threads                                 3
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-08
CPXPARAM_MIP_Strategy_CallbackReducedLP          0
Tried aggregator 2 times.
MIP Presolve eliminated 412 rows and 384 columns.
MIP Presolve modified 537 coefficients.
Aggregator did 21 substitutions.
Reduced MIP has 595 rows, 475 columns, and 10901 nonzeros.
Reduced MIP has 203 binaries, 0 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.09 sec. (8.97 ticks)
Found incumbent of value 1254245.248934 after 0.11 sec. (10.55 ticks)
Probing time = 0.00 sec. (0.39 ticks)
Tried aggregator 1 time.
Reduced MIP has 595 rows, 475 columns, and 10901 nonzeros.
Reduced MIP has 203 binaries, 272 generals, 0 SOSs, and 0 indicators.
Presolve time = 0.03 sec. (4.47 ticks)
Probing time = 0.00 sec. (0.55 ticks)
Clique table members: 51.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 3 threads.
Root relaxation solution time = 0.05 sec. (15.41 ticks)

    Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap

*     0+    0                      1254245.2489    13879.8564            98.89%
*     0+    0                      1225612.3997    13879.8564            98.87%
*     0+    0                      1217588.5782    13879.8564            98.86%
*     0+    0                      1209564.7566    13879.8564            98.85%
*     0+    0                      1201540.9350    13879.8564            98.84%
*     0+    0                      1193517.1135    13879.8564            98.84%
*     0+    0                      1185493.2919    13879.8564            98.83%
*     0+    0                      1177589.9029    13879.8564            98.82%
      0     0   334862.8273   139  1177589.9029   334862.8273      387   71.56%
*     0+    0                       920044.8009   334862.8273            63.60%
      0     0   335605.5047   162   920044.8009     Cuts: 248      516   63.52%
*     0+    0                       732802.2256   335605.5047            54.20%
*     0+    0                       669710.6005   335605.5047            49.89%
      0     0   336504.5144   153   669710.6005     Cuts: 248      617   49.75%
      0     0   338357.1160   172   669710.6005     Cuts: 248      705   49.48%
      0     0   338950.0580   178   669710.6005     Cuts: 248      796   49.39%
      0     0   339315.6848   189   669710.6005     Cuts: 248      900   49.33%
      0     0   339447.9616   193   669710.6005     Cuts: 248      977   49.31%
      0     0   339663.6342   203   669710.6005     Cuts: 228     1091   49.28%
      0     0   339870.9021   205   669710.6005     Cuts: 210     1154   49.25%
*     0+    0                       531348.6042   339870.9021            36.04%
      0     0   340009.1008   207   531348.6042     Cuts: 241     1225   35.87%
      0     0   340855.1873   202   531348.6042     Cuts: 231     1318   35.85%
      0     0   341229.8328   202   531348.6042     Cuts: 248     1424   35.78%
      0     0   341409.5769   200   531348.6042     Cuts: 248     1502   35.75%
      0     0   341615.2848   286   531348.6042     Cuts: 248     1568   35.71%
      0     0   341704.8400   300   531348.6042     Cuts: 225     1626   35.69%
      0     0   341805.5681   222   531348.6042     Cuts: 191     1687   35.67%
*     0+    0                       489513.3319   341805.5681            30.17%
      0     0   341834.6048   218   489513.3319     Cuts: 169     1739   30.17%
      0     0   341900.1390   228   489513.3319     Cuts: 205     1788   30.16%
      0     0   341945.8278   211   489513.3319     Cuts: 197     1855   30.15%
*     0+    0                       489468.1697   341945.8278            30.14%
      0     2   341945.8278   202   489468.1697   341945.8278     1855   30.14%
Elapsed time = 5.53 sec. (446.68 ticks, tree = 0.01 MB, solutions = 14)
*   199+  154                       484741.1904   341968.3817            29.45%
    263   222   342462.1403   198   484741.1904   341968.3817    12287   29.45%
*   550+  420                       461678.3486   341993.1725            25.92%
    555   403   411858.3790   117   461678.3486   341993.1725    21480   25.92%
*   566+  319                       439985.4277   341993.1725            22.27%
    660   321   350009.7742   289   439985.4277   341993.1725    16141   22.27%
*   670+  427                       438464.9662   342020.7550            22.00%

Flow cuts applied:  15
Mixed integer rounding cuts applied:  65
Zero-half cuts applied:  6
Gomory fractional cuts applied:  15

Root node processing (before b&c):
  Real time             =    5.53 sec. (446.21 ticks)
Parallel b&c, 3 threads:
  Real time             =    4.50 sec. (1093.39 ticks)
  Sync time (average)   =    0.59 sec.
  Wait time (average)   =    0.04 sec.
                         ------------
Total (root+branch&cut) =   10.03 sec. (1539.61 ticks)

预期结果是,在Cplex提供的所有可行解决方案中,对于至少在其中成对绑定的所有约束对(无懈可击)。

2 个答案:

答案 0 :(得分:2)

我认为CPLEX由于达到您的时间限制而中止,因此该解决方案未被证明是最佳的。这是正确的吗?

这不是错误。对于用户终止的运行,CPLEX不提供此类保证。找到满足用户请求/设置的解决方案后,CPLEX会尽快停止。

要获得所需的行为,则可以在C API中使用:

https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip/para/51_soln_fixed.html

解决固定问题。由于产生的问题是纯LP,因此您现在可以致电:

  • CPXlpopt()解决了此固定的LP
  • 从LP解决方案查询对偶等。

并且如链接中所述,您可以将solveFixed()用于更高级别的API。

丹尼尔(Daniel)也在这里回答了您的交叉帖子:

https://developer.ibm.com/answers/questions/499882/why-does-cplex-provide-feasible-solutions-with-con/

https://developer.ibm.com/answers/questions/499879/why-does-cplex-provide-slack-on-constraints-when-p/

如果不清楚,请在IBM开发人员论坛上回复。谢谢

答案 1 :(得分:0)

我想我知道答案。

Cplex的启发式方法有时会找到LP非最佳的整数解。这是此行为的example。这确实会产生不连贯的解决方案。许多MIP建模构造(绝对值,最小/最大公式等)都假定所有整数解都是LP最优的。最好Cplex将清理这些解决方案。

以下是我用于此问题的解决方法。 Cplex停止使用MIP解决方案后,总是修复所有离散变量并将其解析为LP。这将清除LP非最佳的整数解决方案。一个可能的例外:如果问题被证明是全局最优的,那么可能就不需要(我对此有些偏执,所以我总是添加最终的LP)。我尚未与其他求解器一起看到这种行为。