我是使用MPI的初学者,我还在阅读文档。但是,当涉及到mpi4py时,几乎没有什么可以解决的。我编写了一个代码,目前使用多处理模块在许多内核上运行,但我需要用mpi4py替换它,以便我可以使用多个节点来运行我的代码。我的代码在下面,当使用多处理模块时,也没有。
使用多处理,
import numpy as np
import multiprocessing
start_time = time.time()
E = 0.1
M = 5
n = 1000
G = 1
c = 1
stretch = [10, 1]
#Point-Distribution Generator Function
def CDF_inv(x, e, m):
A = 1/(1 + np.log(m/e))
if x == 1:
return m
elif 0 <= x <= A:
return e * x / A
elif A < x < 1:
return e * np.exp((x / A) - 1)
#Elliptical point distribution Generator Function
def get_coor_ellip(dist=CDF_inv, params=[E, M], stretch=stretch):
R = dist(random.random(), *params)
theta = random.random() * 2 * np.pi
return (R * np.cos(theta) * stretch[0], R * np.sin(theta) * stretch[1])
def get_dist_sq(x_array, y_array):
return x_array**2 + y_array**2
#Function to obtain alpha
def get_alpha(args):
zeta_list_part, M_list_part, X, Y = args
alpha_x = 0
alpha_y = 0
for key in range(len(M_list_part)):
z_m_z_x = X - zeta_list_part[key][0]
z_m_z_y = Y - zeta_list_part[key][1]
dist_z_m_z = get_dist_sq(z_m_z_x, z_m_z_y)
alpha_x += M_list_part[key] * z_m_z_x / dist_z_m_z
alpha_y += M_list_part[key] * z_m_z_y / dist_z_m_z
return (alpha_x, alpha_y)
#The part of the process containing the loop that needs to be parallelised, where I use pool.map()
if __name__ == '__main__':
# n processes, scale accordingly
num_processes = 10
pool = multiprocessing.Pool(processes=num_processes)
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
print len(x)*len(y)*n,'calculations to be carried out.'
M_list = np.array([.001 for i in range(n)])
# split zeta_list, M_list, X, and Y
zeta_list_split = np.array_split(zeta_list, num_processes, axis=0)
M_list_split = np.array_split(M_list, num_processes)
X_list = [X for e in range(num_processes)]
Y_list = [Y for e in range(num_processes)]
alpha_list = pool.map(
get_alpha, zip(zeta_list_split, M_list_split, X_list, Y_list))
alpha_x = 0
alpha_y = 0
for e in alpha_list:
alpha_x += e[0] * 4 * G / (c**2)
alpha_y += e[1] * 4 * G / (c**2)
print("%f seconds" % (time.time() - start_time))
没有多处理,
import numpy as np
E = 0.1
M = 5
G = 1
c = 1
M_list = [.1 for i in range(n)]
#Point-Distribution Generator Function
def CDF_inv(x, e, m):
A = 1/(1 + np.log(m/e))
if x == 1:
return m
elif 0 <= x <= A:
return e * x / A
elif A < x < 1:
return e * np.exp((x / A) - 1)
n = 1000
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
stretch = [5, 2]
#Elliptical point distribution Generator Function
def get_coor_ellip(dist=CDF_inv, params=[E, M], stretch=stretch):
R = dist(random.random(), *params)
theta = random.random() * 2 * np.pi
return (R * np.cos(theta) * stretch[0], R * np.sin(theta) * stretch[1])
#zeta_list is the list of coordinates of a distribution of points
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
#Creation of a X-Y Grid
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
def get_dist_sq(x_array, y_array):
return x_array**2 + y_array**2
#Calculation of alpha, containing the loop that needs to be parallelised.
alpha_x = 0
alpha_y = 0
for key in range(len(M_list)):
z_m_z_x = X - zeta_list[key][0]
z_m_z_y = Y - zeta_list[key][1]
dist_z_m_z = get_dist_sq(z_m_z_x, z_m_z_y)
alpha_x += M_list[key] * z_m_z_x / dist_z_m_z
alpha_y += M_list[key] * z_m_z_y / dist_z_m_z
alpha_x *= 4 * G / (c**2)
alpha_y *= 4 * G / (c**2)
基本上我的代码所做的是,它首先生成一个遵循特定分布的点列表。然后我应用一个方程式,使用点的距离之间的不同关系来获得数量'alpha'。需要并行化的部分是涉及alpha计算的单个for循环。我想要做的是使用mpi4py而不是多处理来做到这一点,我不知道如何实现这一目标。
答案 0 :(得分:1)
可以使用scatter
/ gather
将multiprocessing.map版本转换为MPI。在您的情况下,您已经将输入列表准备到每个等级的一个块中是有用的。主要区别在于,所有代码首先由所有等级执行,因此您必须完成应该仅通过maste rank 0 conidtional完成的所有操作。
if __name__ == '__main__':
comm = MPI.COMM_WORLD
if comm.rank == 0:
random_sample = [CDF_inv(x, E, M)
for x in [random.random() for e in range(n)]]
zeta_list = [get_coor_ellip() for e in range(n)]
x1, y1 = zip(*zeta_list)
zeta_list = np.column_stack((np.array(x1), np.array(y1)))
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
print len(x)*len(y)*n,'calculations to be carried out.'
M_list = np.array([.001 for i in range(n)])
# split zeta_list, M_list, X, and Y
zeta_list_split = np.array_split(zeta_list, comm.size, axis=0)
M_list_split = np.array_split(M_list, comm.size)
X_list = [X for e in range(comm.size)]
Y_list = [Y for e in range(comm.size)]
work_list = list(zip(zeta_list_split, M_list_split, X_list, Y_list))
else:
work_list = None
my_work = comm.scatter(work_list)
my_alpha = get_alpha(my_work)
alpha_list = comm.gather(my_alpha)
if comm.rank == 0:
alpha_x = 0
alpha_y = 0
for e in alpha_list:
alpha_x += e[0] * 4 * G / (c**2)
alpha_y += e[1] * 4 * G / (c**2)
只要每个处理器获得相似的工作量,这都可以正常工作。如果通信成为问题,您可能希望在处理器之间分割数据生成,而不是在主等级0上完成所有操作。
注意:有关代码的一些事情是虚假的,例如: alpha_[xy]
最终为np.ndarray
。串行版本会出错。
答案 1 :(得分:0)