在mp.RawArray / mmap和Pool.map中使用struct.pack_into()

时间:2019-06-06 14:05:04

标签: python multiprocessing python-multiprocessing mmap pack

我希望加快包装柱状数据的速度。

以下是我尝试使用struct.pack()struct.pack_into()的4种方法:

from struct          import pack, pack_into
from multiprocessing import RawArray, Pool
from time            import time
from mmap            import mmap


def init():

    global shared_array, shared_mmap


def packer(ints_to_pack): 

    return pack(str(len(ints_to_pack)) + 'i', *ints_to_pack)


def pack_into_array(idx_nums_tup):

    idx, ints_to_pack = idx_nums_tup
    pack_into(str(len(ints_to_pack)) + 'i', shared_array, idx*4*total//2 , *ints_to_pack)


def pack_into_mmap(idx_nums_tup):

    idx, ints_to_pack = idx_nums_tup
    pack_into(str(len(ints_to_pack)) + 'i', shared_mmap, idx*4*total//2 , *ints_to_pack)



if __name__ == '__main__':

    total = 5 * 10**7
    shared_array = RawArray('i', total)
    shared_mmap = mmap(-1, total * 4)
    ints_to_pack = range(total)

    pool = Pool()
    # pool = Pool(initializer = init) # not needed?

    # Serial packing
    start = time()
    res = packer(ints_to_pack)
    print ("total serial packing:", time() - start)

    # Parallel map packing
    start = time()
    res = pool.map(packer, (ints_to_pack[:total//2], ints_to_pack[total//2:]))
    print ("total pool packing:", time() - start)

    # Shared Array packing
    start = time()
    pool.map(pack_into_array, enumerate((ints_to_pack[:total//2], ints_to_pack[total//2:])))
    print ("total shared packing:", time() - start)

    # Shared mmap packing
    start = time()
    pool.map(pack_into_mmap, enumerate((ints_to_pack[:total//2], ints_to_pack[total//2:])))
    print ("total mmap packing:", time() - start)

    # print (bytearray(shared_array) == shared_mmap[:])

抽样结果:

total serial packing: 4.2776854038238525
total pool packing: 3.5881083011627197
total shared packing: 2.55037784576416
total mmap packing: 2.3132405281066895

结果并不一致。打包到地图中似乎比大多数时候打包到Raw包中要慢得多,甚至慢一些。

这使我相信我做错了什么,滥用mp或误解了mmap。

第四种方法不是最快吗?

0 个答案:

没有答案