OpenCV卡尔曼滤波器python

时间:2017-03-20 13:11:41

标签: python opencv kalman-filter pykalman

任何人都可以在python 2.7和openCV 2.4.13中为我提供示例代码或某种卡尔曼滤镜实现示例

我想在视频中实现它来跟踪一个人但是,我没有任何参考学习,我找不到任何python示例。

我知道卡尔曼滤波器在openCV中作为cv2.KalmanFilter存在,但我不知道如何使用它。任何指导将不胜感激

2 个答案:

答案 0 :(得分:4)

下面的kalman.py代码是github中OpenCV 3.2 source中包含的示例。如果需要,应该很容易将语法更改回2.4。

#!/usr/bin/env python
"""
   Tracking of rotating point.
   Rotation speed is constant.
   Both state and measurements vectors are 1D (a point angle),
   Measurement is the real point angle + gaussian noise.
   The real and the estimated points are connected with yellow line segment,
   the real and the measured points are connected with red line segment.
   (if Kalman filter works correctly,
    the yellow segment should be shorter than the red one).
   Pressing any key (except ESC) will reset the tracking with a different speed.
   Pressing ESC will stop the program.
"""
# Python 2/3 compatibility
import sys
PY3 = sys.version_info[0] == 3

if PY3:
    long = int

import cv2
from math import cos, sin, sqrt
import numpy as np

if __name__ == "__main__":

    img_height = 500
    img_width = 500
    kalman = cv2.KalmanFilter(2, 1, 0)

    code = long(-1)

    cv2.namedWindow("Kalman")

    while True:
        state = 0.1 * np.random.randn(2, 1)

        kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
        kalman.measurementMatrix = 1. * np.ones((1, 2))
        kalman.processNoiseCov = 1e-5 * np.eye(2)
        kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
        kalman.errorCovPost = 1. * np.ones((2, 2))
        kalman.statePost = 0.1 * np.random.randn(2, 1)

        while True:
            def calc_point(angle):
                return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
                        np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))

            state_angle = state[0, 0]
            state_pt = calc_point(state_angle)

            prediction = kalman.predict()
            predict_angle = prediction[0, 0]
            predict_pt = calc_point(predict_angle)

            measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)

            # generate measurement
            measurement = np.dot(kalman.measurementMatrix, state) + measurement

            measurement_angle = measurement[0, 0]
            measurement_pt = calc_point(measurement_angle)

            # plot points
            def draw_cross(center, color, d):
                cv2.line(img,
                         (center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
                         color, 1, cv2.LINE_AA, 0)
                cv2.line(img,
                         (center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
                         color, 1, cv2.LINE_AA, 0)

            img = np.zeros((img_height, img_width, 3), np.uint8)
            draw_cross(np.int32(state_pt), (255, 255, 255), 3)
            draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
            draw_cross(np.int32(predict_pt), (0, 255, 0), 3)

            cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
            cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)

            kalman.correct(measurement)

            process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1)
            state = np.dot(kalman.transitionMatrix, state) + process_noise

            cv2.imshow("Kalman", img)

            code = cv2.waitKey(100)
            if code != -1:
                break

        if code in [27, ord('q'), ord('Q')]:
            break

    cv2.destroyWindow("Kalman")

这是卡尔曼滤波器上的OpenCV 2.4 Doc。希望这有帮助。

答案 1 :(得分:1)

我知道您特别提到需要“ Python 2.7”代码。尽管如此,如果有人需要,我会提供一些信息。

来自我频道的多目标跟踪视频:https://www.youtube.com/watch?v=bkn6M4LAoHk

您应该了解的有关卡尔曼滤波和多人跟踪的基本知识:

  • 作为传感器的相机:您需要一个适当的检测器(YOLO等),以提供逐帧边界框。

  • 跟踪边界框: 轨道处理由卡尔曼滤波框架完成。八维状态空间,其中包含边界框的中心位置,纵横比,高度以及它们在图像坐标中的相应速度。标准卡尔曼滤波器用于恒速运动和线性观测模型,其中边界坐标被用作对物体状态的直接观测。

  • 帧到帧关联:如果场景中有三个人怎么办?由于检测器无法在边界框上提供任何标识,因此您需要将当前帧的边界框与以前的边界框进行匹配。我建议您在此上搜索“门控”和“数据关联”关键字。

class KalmanFilter(object):
    """
    A simple Kalman filter for tracking bounding boxes in image space.
    The 8-dimensional state space
        x, y, a, h, vx, vy, va, vh
    contains the bounding box center position (x, y), aspect ratio a, height h,
    and their respective velocities.
    Object motion follows a constant velocity model. The bounding box location
    (x, y, a, h) is taken as direct observation of the state space (linear
    observation model).
    """

    def __init__(self):
        ndim, dt = 4, 1.

        # Create Kalman filter model matrices.
        self._motion_mat = np.eye(2 * ndim, 2 * ndim)
        for i in range(ndim):
            self._motion_mat[i, ndim + i] = dt
        self._update_mat = np.eye(ndim, 2 * ndim)

        # Motion and observation uncertainty are chosen relative to the current
        # state estimate. These weights control the amount of uncertainty in
        # the model. This is a bit hacky.
        self._std_weight_position = 1. / 20
        self._std_weight_velocity = 1. / 160

    def initiate(self, measurement):
        """Create track from unassociated measurement.
        Parameters
        ----------
        measurement : ndarray
            Bounding box coordinates (x, y, a, h) with center position (x, y),
            aspect ratio a, and height h.
        Returns
        -------
        (ndarray, ndarray)
            Returns the mean vector (8 dimensional) and covariance matrix (8x8
            dimensional) of the new track. Unobserved velocities are initialized
            to 0 mean.
        """
        mean_pos = measurement
        mean_vel = np.zeros_like(mean_pos)
        mean = np.r_[mean_pos, mean_vel]

        std = [
            2 * self._std_weight_position * measurement[3],
            2 * self._std_weight_position * measurement[3],
            1e-2,
            2 * self._std_weight_position * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            1e-5,
            10 * self._std_weight_velocity * measurement[3]]
        covariance = np.diag(np.square(std))
        return mean, covariance

    def predict(self, mean, covariance):
        """Run Kalman filter prediction step.
        Parameters
        ----------
        mean : ndarray
            The 8 dimensional mean vector of the object state at the previous
            time step.
        covariance : ndarray
            The 8x8 dimensional covariance matrix of the object state at the
            previous time step.
        Returns
        -------
        (ndarray, ndarray)
            Returns the mean vector and covariance matrix of the predicted
            state. Unobserved velocities are initialized to 0 mean.
        """
        std_pos = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-2,
            self._std_weight_position * mean[3]]
        std_vel = [
            self._std_weight_velocity * mean[3],
            self._std_weight_velocity * mean[3],
            1e-5,
            self._std_weight_velocity * mean[3]]
        motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

        mean = np.dot(self._motion_mat, mean)
        covariance = np.linalg.multi_dot((
            self._motion_mat, covariance, self._motion_mat.T)) + motion_cov

        return mean, covariance

    def project(self, mean, covariance):
        """Project state distribution to measurement space.
        Parameters
        ----------
        mean : ndarray
            The state's mean vector (8 dimensional array).
        covariance : ndarray
            The state's covariance matrix (8x8 dimensional).
        Returns
        -------
        (ndarray, ndarray)
            Returns the projected mean and covariance matrix of the given state
            estimate.
        """
        std = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-1,
            self._std_weight_position * mean[3]]
        innovation_cov = np.diag(np.square(std))

        mean = np.dot(self._update_mat, mean)
        covariance = np.linalg.multi_dot((
            self._update_mat, covariance, self._update_mat.T))
        return mean, covariance + innovation_cov

    def update(self, mean, covariance, measurement):
        """Run Kalman filter correction step.
        Parameters
        ----------
        mean : ndarray
            The predicted state's mean vector (8 dimensional).
        covariance : ndarray
            The state's covariance matrix (8x8 dimensional).
        measurement : ndarray
            The 4 dimensional measurement vector (x, y, a, h), where (x, y)
            is the center position, a the aspect ratio, and h the height of the
            bounding box.
        Returns
        -------
        (ndarray, ndarray)
            Returns the measurement-corrected state distribution.
        """
        projected_mean, projected_cov = self.project(mean, covariance)

        chol_factor, lower = scipy.linalg.cho_factor(
            projected_cov, lower=True, check_finite=False)
        kalman_gain = scipy.linalg.cho_solve(
            (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
            check_finite=False).T
        innovation = measurement - projected_mean

        new_mean = mean + np.dot(innovation, kalman_gain.T)
        new_covariance = covariance - np.linalg.multi_dot((
            kalman_gain, projected_cov, kalman_gain.T))
        return new_mean, new_covariance

    def gating_distance(self, mean, covariance, measurements,
                        only_position=False):
        """Compute gating distance between state distribution and measurements.
        A suitable distance threshold can be obtained from `chi2inv95`. If
        `only_position` is False, the chi-square distribution has 4 degrees of
        freedom, otherwise 2.
        Parameters
        ----------
        mean : ndarray
            Mean vector over the state distribution (8 dimensional).
        covariance : ndarray
            Covariance of the state distribution (8x8 dimensional).
        measurements : ndarray
            An Nx4 dimensional matrix of N measurements, each in
            format (x, y, a, h) where (x, y) is the bounding box center
            position, a the aspect ratio, and h the height.
        only_position : Optional[bool]
            If True, distance computation is done with respect to the bounding
            box center position only.
        Returns
        -------
        ndarray
            Returns an array of length N, where the i-th element contains the
            squared Mahalanobis distance between (mean, covariance) and
            `measurements[i]`.
        """
        mean, covariance = self.project(mean, covariance)
        if only_position:
            mean, covariance = mean[:2], covariance[:2, :2]
            measurements = measurements[:, :2]

        cholesky_factor = np.linalg.cholesky(covariance)
        d = measurements - mean
        z = scipy.linalg.solve_triangular(
            cholesky_factor, d.T, lower=True, check_finite=False,
            overwrite_b=True)
        squared_maha = np.sum(z * z, axis=0)
        return squared_maha

这是一个基本的多目标跟踪器。

class Tracker:
    """
    This is the multi-target tracker.
    Parameters
    ----------
    metric : nn_matching.NearestNeighborDistanceMetric
        A distance metric for measurement-to-track association.
    max_age : int
        Maximum number of missed misses before a track is deleted.
    n_init : int
        Number of consecutive detections before the track is confirmed. The
        track state is set to `Deleted` if a miss occurs within the first
        `n_init` frames.
    Attributes
    ----------
    metric : nn_matching.NearestNeighborDistanceMetric
        The distance metric used for measurement to track association.
    max_age : int
        Maximum number of missed misses before a track is deleted.
    n_init : int
        Number of frames that a track remains in initialization phase.
    kf : kalman_filter.KalmanFilter
        A Kalman filter to filter target trajectories in image space.
    tracks : List[Track]
        The list of active tracks at the current time step.
    """

    def __init__(self, metric, max_iou_distance=0.7, max_age=30, n_init=3):
        self.metric = metric
        self.max_iou_distance = max_iou_distance
        self.max_age = max_age
        self.n_init = n_init

        self.kf = kalman_filter.KalmanFilter()
        self.tracks = []
        self._next_id = 1

    def predict(self):
        """Propagate track state distributions one time step forward.
        This function should be called once every time step, before `update`.
        """
        for track in self.tracks:
            track.predict(self.kf)

    def update(self, detections):
        """Perform measurement update and track management.
        Parameters
        ----------
        detections : List[deep_sort.detection.Detection]
            A list of detections at the current time step.
        """
        # Run matching cascade.
        matches, unmatched_tracks, unmatched_detections = \
            self._match(detections)

        # Update track set.
        for track_idx, detection_idx in matches:
            self.tracks[track_idx].update(
                self.kf, detections[detection_idx])
        for track_idx in unmatched_tracks:
            self.tracks[track_idx].mark_missed()
        for detection_idx in unmatched_detections:
            self._initiate_track(detections[detection_idx])
        self.tracks = [t for t in self.tracks if not t.is_deleted()]

        # Update distance metric.
        active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
        features, targets = [], []
        for track in self.tracks:
            if not track.is_confirmed():
                continue
            features += track.features
            targets += [track.track_id for _ in track.features]
            track.features = []
        self.metric.partial_fit(
            np.asarray(features), np.asarray(targets), active_targets)

    def _match(self, detections):

        def gated_metric(tracks, dets, track_indices, detection_indices):
            features = np.array([dets[i].feature for i in detection_indices])
            targets = np.array([tracks[i].track_id for i in track_indices])
            cost_matrix = self.metric.distance(features, targets)
            cost_matrix = linear_assignment.gate_cost_matrix(
                self.kf, cost_matrix, tracks, dets, track_indices,
                detection_indices)

            return cost_matrix

        # Split track set into confirmed and unconfirmed tracks.
        confirmed_tracks = [
            i for i, t in enumerate(self.tracks) if t.is_confirmed()]
        unconfirmed_tracks = [
            i for i, t in enumerate(self.tracks) if not t.is_confirmed()]

        # Associate confirmed tracks using appearance features.
        matches_a, unmatched_tracks_a, unmatched_detections = \
            linear_assignment.matching_cascade(
                gated_metric, self.metric.matching_threshold, self.max_age,
                self.tracks, detections, confirmed_tracks)

        # Associate remaining tracks together with unconfirmed tracks using IOU.
        iou_track_candidates = unconfirmed_tracks + [
            k for k in unmatched_tracks_a if
            self.tracks[k].time_since_update == 1]
        unmatched_tracks_a = [
            k for k in unmatched_tracks_a if
            self.tracks[k].time_since_update != 1]
        matches_b, unmatched_tracks_b, unmatched_detections = \
            linear_assignment.min_cost_matching(
                iou_matching.iou_cost, self.max_iou_distance, self.tracks,
                detections, iou_track_candidates, unmatched_detections)

        matches = matches_a + matches_b
        unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
        return matches, unmatched_tracks, unmatched_detections

    def _initiate_track(self, detection):
        mean, covariance = self.kf.initiate(detection.to_xyah())
        self.tracks.append(Track(
            mean, covariance, self._next_id, self.n_init, self.max_age,
            detection.feature))
        self._next_id += 1