只是理解List Comprehensions,就像在最近的一次采访中那样,技术人员问我这个问题,并且作为一个自学者,我回答了lambda,这不是列表理解。
假设我们有时间序列数据" Shiller",http://us.spindices.com/indices/real-estate/sp-corelogic-case-shiller-us-national-home-price-nsa-index
我使用以下循环计算了aic / bic:
shiller = [please use some random data or use the link above]
import matplotlib.pyplot as plt
import statsmodels.api as sm
import pandas as pd
def aicbic(shiller):
arimaijk = []
aicijk = []
bicijk = []
index = []
for i in range(1,3):
for j in range(1,2):
for k in range(0,5):
arimaijk.append(sm.tsa.ARIMA(shiller,(i,j,k)).fit())
index.append([i,j,k])
aicijk.append(arimaijk[k].aic)
bicijk.append(arimaijk[k].bic)
return aicijk, bicijk
aicbic(shiller)
Out[9]:
([-235.77314152121426,-233.9375761653174,-233.3841011331017,-241.65994870973782,-240.2975620564456,-235.77314152121426,-233.9375761653174,-233.3841011331017,-241.65994870973782,-240.2975620564456],
[-227.98778197081049,-223.55709676477906,-220.40850188242874,-226.08922960893028,-222.13172310550345,-227.98778197081049,-223.55709676477906,-220.40850188242874,-226.08922960893028,-222.13172310550345])
现在,我想使用List Comprehension这个结果,所以我写了以下几行,这些行返回错误:
def aicbic(data):
arimaijk = []
aicijk = []
bicijk = []
index = []
[(sm.tsa.ARIMA(data,(i,j,k)).fit(),index.append([i,j,k]),\
aicijk.append(arimaijk[k].aic),bicijk.append(arimaijk[k].bic)) \
for i in range(1,3) for j in range(1,2) for k in range(0,5)]
IndexError:列表索引超出范围
答案 0 :(得分:2)
错误与列表理解本身无关:
[(sm.tsa.ARIMA(data,(i,j,k)).fit(),index.append([i,j,k]),\
aicijk.append(arimaijk[k].aic),bicijk.append(arimaijk[k].bic)) \
for i in range(1,3) for j in range(1,2) for k in range(0,5)]
引发错误IndexError: list index out of range
是因为您希望访问arimaijk[k]
,而arimaijk
是一个空列表(aicbic(data)
函数的第一行是arimaijk=[]
) 。
答案 1 :(得分:1)
您的函数使用itertools和list comprehensions重新编写:
<强>代码:强>
import itertools as it
def aicbic(shiller):
loop = list(it.product(range(1, 3), range(1, 2), range(0, 5)))
arimaijk = [sm.tsa.ARIMA(shiller, (i, j, k)).fit() for i, j, k in loop]
aicijk = [arimaijk[k].aic for i, j, k in loop]
bicijk = [arimaijk[k].bic for i, j, k in loop]
return aicijk, bicijk
测试代码:
result = aicbic(shiller)
import numpy as np
assert np.all(np.isclose(result, (
[-235.77314152121426, -233.9375761653174, -233.3841011331017,
-241.65994870973782, -240.2975620564456, -235.77314152121426,
-233.9375761653174, -233.3841011331017, -241.65994870973782,
-240.2975620564456],
[-227.98778197081049, -223.55709676477906, -220.40850188242874,
-226.08922960893028, -222.13172310550345, -227.98778197081049,
-223.55709676477906, -220.40850188242874, -226.08922960893028,
-222.13172310550345]
)))
注意:强>
您可能有某种错误,因为aicijk
和bicijk
仅依赖于k
。
答案 2 :(得分:0)
感谢Hossein,我想我现在知道如何使用List Comprehensions了!
def aicbic(data):
arimaijk = []
aicijk = []
bicijk = []
index = []
[(arimaijk.append(sm.tsa.ARIMA(data,(i,j,k)).fit()),index.append([i,j,k]),\
aicijk.append(arimaijk[k].aic),bicijk.append(arimaijk[k].bic)) \
for i in range(1,3) for j in range(1,2) for k in range(0,5)]
return aicijk, bicijk
result = aicbic(shiller)