std::list<Node *> lst;
//....
Node * node = /* get from somewhere pointer on my node */;
lst.remove(node);
std :: list :: remove方法是否调用每个被删除元素的析构函数(和空闲内存)?如果是,我怎么能避免呢?
答案 0 :(得分:44)
是的,从容器中删除Foo*
会破坏Foo*
,但不会释放Foo
。销毁原始指针总是一个无操作。它不能是任何其他方式!让我告诉你几个原因。
如果指针实际上是动态分配的,那么删除指针才有意义,但是当指针变量被销毁时,运行时怎么可能知道是否就是这种情况?指针也可以指向静态变量和自动变量,并删除其中一个变量undefined behavior。
{
Foo x;
Foo* p = &x;
Foo* q = new Foo;
// Has *q been allocated dynamically?
// (The answer is YES, but the runtime doesn't know that.)
// Has *p been allocated dynamically?
// (The answer is NO, but the runtime doesn't know that.)
}
无法确定指针对象是否已在过去发布。删除相同的指针两次会产生undefined behavior。 (第一次删除后它变为悬空指针。)
{
Foo* p = new Foo;
Foo* q = p;
// Has *q already been released?
// (The answer is NO, but the runtime doesn't know that.)
// (...suppose that pointees WOULD be automatically released...)
// Has *p already been released?
// (The answer WOULD now be YES, but the runtime doesn't know that.)
}
也无法检测指针变量是否已初始化。猜猜当你试图删除这样的指针时会发生什么?再一次,答案是undefined behavior。
{
Foo* p;
// Has p been properly initialized?
// (The answer is NO, but the runtime doesn't know that.)
}
类型系统不区分指向单个对象(Foo*
)的指针和指向对象数组的第一个元素(也是Foo*
)的指针。当指针变量被销毁时,运行时无法确定是通过delete
还是通过delete[]
释放指针。通过错误的表单发布会调用undefined behavior。
{
Foo* p = new Foo;
Foo* q = new Foo[100];
// What should I do, delete q or delete[] q?
// (The answer is delete[] q, but the runtime doesn't know that.)
// What should I do, delete p or delete[] p?
// (The answer is delete p, but the runtime doesn't know that.)
}
由于运行时无法对指针对象做任何事情,因此销毁指针变量总是一个无操作。无所事事肯定比由于不知情的猜测导致未定义的行为更好: - )
考虑使用智能指针作为容器的值类型,而不是原始指针,因为它们负责在不再需要时释放指针。根据您的需要,使用std::shared_ptr<Foo>
或std::unique_ptr<Foo>
。如果您的编译器尚不支持C ++ 0x,请使用boost::shared_ptr<Foo>
。
Never,我再说一遍,永远不会使用std::auto_ptr<Foo>
作为容器的值类型。
答案 1 :(得分:12)
它调用list
中每个项目的析构函数 - 但这不是Node
对象。它是Node*
。
所以它不会删除Node
指针。
这有意义吗?
答案 2 :(得分:7)
它会调用列表中数据的析构函数。这意味着,std::list<T>::remove
将调用T
的析构函数(当T
类似于std::vector
时,这是必需的。)
在你的情况下,它会调用Node*
的析构函数,这是一个无操作。它不会调用node
的析构函数。
答案 3 :(得分:3)
是的,虽然在这种情况下,Node *没有析构函数。但是,根据其内部结构,各种Node *值将被范围规则删除或销毁。如果Node *中有一些非基本类型,则会调用析构函数。
是否在节点上调用了析构函数?不,但“节点”不是列表中的元素类型。
关于你的另一个问题,你不能。标准列表容器(实际上是所有标准容器)采用其内容的所有权并将其清理。如果您不希望发生这种情况,标准容器不是一个好的选择。
答案 4 :(得分:0)
由于您将指针放入std::list
,因此不会在指向Node
对象上调用析构函数。
如果要将堆分配的对象存储在STL容器中并在删除时将其解除,请将它们包装在智能指针中,如boost::shared_ptr
答案 5 :(得分:0)
理解的最佳方法是测试每个表格并观察结果。要巧妙地将容器对象与您自己的自定义对象一起使用,您需要对行为有一个很好的理解。
简而言之,对于类型Node*
,既不调用解构函数也不调用delete / free;但是,对于类型Node
,将调用解构函数,而delete / free的考虑是列表的实现细节。这意味着,它取决于列表实现是否使用new / malloc。
在unique_ptr<Node>
的情况下,调用解构函数并调用delete / free,因为你必须给它new
分配的内容。
#include <iostream>
#include <list>
#include <memory>
using namespace std;
void* operator new(size_t size) {
cout << "new operator with size " << size << endl;
return malloc(size);
}
void operator delete(void *ptr) {
cout << "delete operator for " << ptr << endl;
free(ptr);
}
class Apple {
public:
int id;
Apple() : id(0) { cout << "apple " << this << ":" << this->id << " constructed" << endl; }
Apple(int id) : id(id) { cout << "apple " << this << ":" << this->id << " constructed" << endl; }
~Apple() { cout << "apple " << this << ":" << this->id << " deconstructed" << endl; }
bool operator==(const Apple &right) {
return this->id == right.id;
}
static void* operator new(size_t size) {
cout << "new was called for Apple" << endl;
return malloc(size);
}
static void operator delete(void *ptr) {
cout << "delete was called for Apple" << endl;
free(ptr);
}
/*
The compiler generates one of these and simply assignments
member variable. Think memcpy. It can be disabled by uncommenting
the below requiring the usage of std::move or one can be implemented.
*/
//Apple& operator=(const Apple &from) = delete;
};
int main() {
list<Apple*> a = list<Apple*>();
/* deconstructor not called */
/* memory not released using delete */
cout << "test 1" << endl;
a.push_back(new Apple());
a.pop_back();
/* deconstructor not called */
/* memory not released using delete */
cout << "test 2" << endl;
Apple *b = new Apple();
a.push_back(b);
a.remove(b);
cout << "list size is now " << a.size() << endl;
list<Apple> c = list<Apple>();
cout << "test 3" << endl;
c.push_back(Apple(1)); /* deconstructed after copy by value (memcpy like) */
c.push_back(Apple(2)); /* deconstructed after copy by value (memcpy like) */
/*
the list implementation will call new... but not
call constructor when Apple(2) is pushed; however,
delete will be called; since it was copied by value
in the last push_back call
double deconstructor on object with same data
*/
c.pop_back();
Apple z(10);
/* will remove nothing */
c.remove(z);
cout << "test 4" << endl;
/* Apple(5) will never deconstruct. It was literally overwritten by Apple(1). */
/* Think memcpy... but not exactly. */
z = Apple(1);
/* will remove by matching using the operator== of Apple or default operator== */
c.remove(z);
cout << "test 5" << endl;
list<unique_ptr<Apple>> d = list<unique_ptr<Apple>>();
d.push_back(unique_ptr<Apple>(new Apple()));
d.pop_back();
/* z deconstructs */
return 0;
}
请注意内存地址。你可以知道哪些指向堆栈,哪些指向堆中的范围。