我正在尝试使用Accord.Net中的OneclassSupportVectorLearning来实现异常检测。我在训练进度中遇到NullReference错误。下面是我在测试中的示例代码。 感谢有人可以帮我解决这个问题。
double[][] inputs =
{
new double[] { 0, 1, 1, 0 }, // 0
new double[] { 0, 1, 0, 0 }, // 0
new double[] { 0, 0, 1, 0 }, // 0
new double[] { 0, 1, 1, 0 }, // 0
new double[] { 0, 1, 0, 0 }, // 0
};
var oteacher = new OneclassSupportVectorLearning<ChiSquare,double[]>();
var k = oteacher.Learn(inputs); //NullReference error occur here.
EDIT ---------------------------------------------- -----------------------
根据Jstreet的评论,尝试下面的代码,但它适用于2-dim但在更高维度上失败。
static void Main(string[] args)
{
Random r = new Random(DateTime.Now.Millisecond);
int size = 1000;
int min = 45;
int max = 55;
double[][] inputs = new double[size][];
for (int i = 0; i < size; i++)
{
double[] d = new double[] { r.Next(min,max), r.Next(min,max), r.Next(min,max), r.Next(min,max) };
inputs[i] = d;
}
var oteacher = new OneclassSupportVectorLearning<ChiSquare>();
var k = oteacher.Learn(inputs);
double[][] test =
{
// normal
new double[] { 50, 53 , 50, 50},
new double[] { 49, 52 , 50, 50},
new double[] { 48, 51 , 50, 50},
new double[] { 47, 52 , 50, 50},
new double[] { 46, 53 , 50, 50},
// anomalies
new double[] { 50, 70, 70, 70 },
new double[] { 51, 69, 70, 70 },
new double[] { 52, 68, 70, 70 },
new double[] { 53, 67, 70, 70 },
new double[] { 54, 66, 70, 70 },
};
foreach (double[] d in test)
{
if (k.Decide(d) == true)
Console.WriteLine(" OK = {0}, {1}, {2}, {3}", d[0], d[1], d[2], d[3]);
else Console.WriteLine(" Anomaly = {0}, {1}, {2}, {3}", d[0], d[1], d[2], d[3]);
}
Console.ReadLine();
}
答案 0 :(得分:1)
我建议您尝试使用二维数据集,以便可以直观地显示结果并感受它:
static void Main(string[] args)
{
Random r = new Random(DateTime.Now.Millisecond);
int size = 100;
int min = 45;
int max = 55;
double[][] inputs = new double[size][];
for (int i = 0; i < size; i++)
{
double[] d = new double[] { r.Next(min,max), r.Next(min,max) };
inputs[i] = d;
}
var oteacher = new OneclassSupportVectorLearning<ChiSquare>();
var k = oteacher.Learn(inputs);
double[][] test =
{
// normal
new double[] { 50, 53 },
new double[] { 49, 52 },
new double[] { 48, 51 },
new double[] { 47, 52 },
new double[] { 46, 53 },
// anomalies
new double[] { 50, 70 },
new double[] { 51, 69 },
new double[] { 52, 68 },
new double[] { 53, 67 },
new double[] { 54, 66 },
};
foreach (double[] d in test)
{
if (k.Decide(d) == true)
Console.WriteLine(" OK = {0}, {1}", d[0], d[1]);
else Console.WriteLine(" Anomaly = {0}, {1}", d[0], d[1]);
}
Console.ReadLine();
}
此示例代码生成以下输出:
OK = 50, 53
OK = 49, 52
OK = 48, 51
OK = 47, 52
OK = 46, 53
Anomaly = 50, 70
Anomaly = 51, 69
Anomaly = 52, 68
Anomaly = 53, 67
Anomaly = 54, 66
这是相同结果的图形视图:
编辑:就像我说的,需要一些实验。这是我的4维输入数据集的结果。请注意,我减少了每个维度的变量,并保持相同的输入大小,100。
static void Main(string[] args)
{
Random r = new Random(DateTime.Now.Millisecond);
int size = 100;
int min = 45;
int max = 50;
int min2 = 60;
int max2 = 65;
double[][] inputs = new double[size][];
for (int i = 0; i < size; i++)
{
double[] d = new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) };
inputs[i] = d;
}
var oteacher = new OneclassSupportVectorLearning<ChiSquare>();
var k = oteacher.Learn(inputs);
double[][] test =
{
// normal
new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) },
new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) },
new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) },
new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) },
new double[] { r.Next(min, max), r.Next(min, max), r.Next(min, max), r.Next(min, max) },
// anomalies
new double[] { r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2) },
new double[] { r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2) },
new double[] { r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2) },
new double[] { r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2) },
new double[] { r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2), r.Next(min2, max2) },
};
foreach (double[] d in test)
{
if (k.Decide(d) == true)
Console.WriteLine("OK = {0}, {1}, {2}, {3}", d[0], d[1], d[2], d[3]);
else Console.WriteLine("Anomaly = {0}, {1}, {2}, {3}", d[0], d[1], d[2], d[3]);
}
Console.ReadLine();
}
结果:
OK = 49, 46, 47, 49
OK = 49, 45, 45, 47
OK = 45, 45, 46, 47
OK = 47, 49, 47, 48
OK = 45, 45, 47, 48
Anomaly = 62, 60, 61, 63
Anomaly = 61, 63, 63, 64
Anomaly = 64, 60, 60, 64
Anomaly = 61, 64, 63, 63
Anomaly = 62, 60, 62, 62