我已经使用sklearn框架实现了LinearSVC和SVC进行文本分类。 我使用TfidfVectorizer来获取由两个不同类(良性数据和恶意数据)组成的输入数据的稀疏表示。这部分工作得非常好,但现在我想通过使用OneClassSVM分类器并仅使用一个类(异常值检测...)训练模型来实现某种异常检测。不幸的是,它不适用于稀疏数据。一些开发人员正在开发补丁(https://github.com/scikit-learn/scikit-learn/pull/1586),但是存在一些错误,因此还没有使用OneClassSVM实现的解决方案。
sklearn框架中是否有其他方法可以做类似的事情?我正在查看这些示例,但似乎没有任何内容。
谢谢!
答案 0 :(得分:5)
有点晚了,但是如果其他人正在寻找关于此的信息......这里有一个第三方异常检测模块: http://www.cit.mak.ac.ug/staff/jquinn/software/lsanomaly.html,基于最小二乘法。它应该是OneClassSVM的插件替代品。
答案 1 :(得分:2)
不幸的是,scikit-learn目前implements只有一类SVM和强大的协方差估计器用于异常值检测
您可以通过检查2d数据的差异来尝试比较这些方法(as provided in the doc):
import numpy as np
import pylab as pl
import matplotlib.font_manager
from scipy import stats
from sklearn import svm
from sklearn.covariance import EllipticEnvelope
# Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]
# define two outlier detection tools to be compared
classifiers = {
"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
kernel="rbf", gamma=0.1),
"robust covariance estimator": EllipticEnvelope(contamination=.1)}
# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
ground_truth[-n_outliers:] = 0
# Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):
np.random.seed(42)
# Data generation
X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset
X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset
X = np.r_[X1, X2]
# Add outliers
X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]
# Fit the model with the One-Class SVM
pl.figure(figsize=(10, 5))
for i, (clf_name, clf) in enumerate(classifiers.iteritems()):
# fit the data and tag outliers
clf.fit(X)
y_pred = clf.decision_function(X).ravel()
threshold = stats.scoreatpercentile(y_pred,
100 * outliers_fraction)
y_pred = y_pred > threshold
n_errors = (y_pred != ground_truth).sum()
# plot the levels lines and the points
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
subplot = pl.subplot(1, 2, i + 1)
subplot.set_title("Outlier detection")
subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),
cmap=pl.cm.Blues_r)
a = subplot.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')
subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],
colors='orange')
b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white')
c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black')
subplot.axis('tight')
subplot.legend(
[a.collections[0], b, c],
['learned decision function', 'true inliers', 'true outliers'],
prop=matplotlib.font_manager.FontProperties(size=11))
subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
subplot.set_xlim((-7, 7))
subplot.set_ylim((-7, 7))
pl.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)
pl.show()