如何为批量流学习提供批量CSV数据

时间:2017-02-22 04:07:31

标签: csv tensorflow tensorboard

感谢您阅读我的问题

我有这样的数据。 19个输入数据和1个标签

我已经尝试过mnist,tensorboard示例和csv批量加载示例。 现在我正在尝试将它们混合在一起。

加载csv数据并批量处理。 只学习1层并检查成本。 这就是我想做的一切

这是我的代码

import tensorflow as tf

with tf.name_scope("input") as scope:
    x = tf.placeholder(tf.float32, [None, 19])

with tf.name_scope("weight") as scope:
    W = tf.Variable(tf.zeros([19, 1]))

with tf.name_scope("bias") as scope:
    b = tf.Variable(tf.zeros([1]))   

with tf.name_scope("layer1") as scope:
    y = tf.nn.relu(tf.matmul(x, W) + b)

w_hist = tf.summary.histogram("weight", W) 
b_hist = tf.summary.histogram("bias", b) 
y_hist = tf.summary.histogram("y", y) 

with tf.name_scope("y_") as scope:                              
    y_ = tf.placeholder(tf.float32, [None, 1])

with tf.name_scope("cost") as scope:
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),  reduction_indices=[1]))
cost_sum = tf.summary.scalar("cost",cross_entropy)

with tf.name_scope("train") as scope:    
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)


def read_my_file_format(filename_queue):

    reader = tf.TextLineReader(skip_header_lines=1)    

    _, value = reader.read(filename_queue)

    record_defaults = [[1], [1], [1], [1], [1],[1], [1], [1], [1], [1],[1], [1], [1], [1], [1],[1], [1], [1], [1], [1]] 

    record_defaults = [tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32),  
                   tf.constant([1], dtype=tf.float32), 
                   tf.constant([1], dtype=tf.float32)] 

col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14, col15 ,col16, col17, col18, col19, col20  = tf.decode_csv(value, record_defaults=record_defaults)    

    features = tf.pack([col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14, col15 ,col16, col17, col18, col19])
    label = tf.pack([col20])  

    return features, label  


def input_pipeline(batch_size, num_epochs=None):

    min_after_dequeue = 10000
    capacity = min_after_dequeue + 3 * batch_size

    filename_queue = tf.train.string_input_producer(["sampledata1999_2008.csv"], num_epochs=num_epochs, shuffle=True)

    example, label = read_my_file_format(filename_queue)     


    example_batch, label_batch = tf.train.shuffle_batch([example, label], 
                                                     batch_size=batch_size, 
                                                     capacity=capacity, 
                                                     min_after_dequeue=min_after_dequeue)    
return example_batch, label_batch    

examples, labels = input_pipeline(100,1)

init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())

sess = tf.Session()

# Initialize the variables (like the epoch counter).    
sess.run(init_op)

merged = tf.summary.merge_all()
trainwriter =tf.summary.FileWriter("./board/custom", sess.graph)

# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

try:
    i = 0;
    while not coord.should_stop():
        i = i + 1
        example_batch, label_batch = sess.run([examples, labels])
        sess.run(train_step, feed_dict={x: example_batch, y_: label_batch})        
        if i % 100 == 0:
            summary = sess.run(merged, feed_dict={x: example_batch, y_: label_batch})
            trainwriter.add_summary(summary,i)             
            print(example_batch)       

except tf.errors.OutOfRangeError:
    print('Done training -- epoch limit reached')
finally:
    # When done, ask the threads to stop.
    coord.request_stop()

# Wait for threads to finish.
coord.join(threads)
sess.close()

我检查批量数据是否正确输入到cross_entropy。 但如果我使用这些

    if i % 100 == 0:
        summary = sess.run(merged, feed_dict={x: example_batch, y_: label_batch})
        trainwriter.add_summary(summary,i)             
        print(example_batch)  

我收到了这样的错误消息

---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1020     try:
-> 1021       return fn(*args)
   1022     except errors.OpError as e:

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1002                                  feed_dict, fetch_list, target_list,
-> 1003                                  status, run_metadata)
   1004 

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
    468           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 469           pywrap_tensorflow.TF_GetCode(status))
    470   finally:

InvalidArgumentError: Nan in summary histogram for: weight_1
     [[Node: weight_1 = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](weight_1/tag, weight/Variable/read)]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-1-d641bed636e8> in <module>()
    104         example_batch, label_batch = sess.run([examples, labels])
    105         sess.run(train_step, feed_dict={x: example_batch, y_: label_batch})
--> 106         summary = sess.run(merged, feed_dict={x: example_batch, y_: label_batch})
    107         writer.add_summary(summary,i)
    108         print(example_batch)

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    764     try:
    765       result = self._run(None, fetches, feed_dict, options_ptr,
--> 766                          run_metadata_ptr)
    767       if run_metadata:
    768         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    962     if final_fetches or final_targets:
    963       results = self._do_run(handle, final_targets, final_fetches,
--> 964                              feed_dict_string, options, run_metadata)
    965     else:
    966       results = []

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1012     if handle is None:
   1013       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1014                            target_list, options, run_metadata)
   1015     else:
   1016       return self._do_call(_prun_fn, self._session, handle, feed_dict,

C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1032         except KeyError:
   1033           pass
-> 1034       raise type(e)(node_def, op, message)
   1035 
   1036   def _extend_graph(self):

InvalidArgumentError: Nan in summary histogram for: weight_1
     [[Node: weight_1 = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](weight_1/tag, weight/Variable/read)]]

Caused by op 'weight_1', defined at:
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\runpy.py", line 184, in _run_module_as_main
    "__main__", mod_spec)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
    app.start()
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tornado\ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-1-d641bed636e8>", line 17, in <module>
    w_hist = tf.summary.histogram("weight", W)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\summary\summary.py", line 205, in histogram
    tag=scope.rstrip('/'), values=values, name=scope)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\ops\gen_logging_ops.py", line 139, in _histogram_summary
    name=name)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 759, in apply_op
    op_def=op_def)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\framework\ops.py", line 2240, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "C:\Program Files\Anaconda3\envs\tensorflow_env\lib\site-packages\tensorflow\python\framework\ops.py", line 1128, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Nan in summary histogram for: weight_1
     [[Node: weight_1 = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](weight_1/tag, weight/Variable/read)]]

我的代码有什么问题?

1 个答案:

答案 0 :(得分:0)

您的代码有一个问题是权重的初始化......您应该给它们随机权重(否则您的网络将无法学习)。摘要说明你的权重中有NaN(不是数字)。尝试运行W.eval()以查看权重矩阵的确切含义!