我正在使用以下代码使用c ++在open cv 3中对以下图像进行框架化。输入图像如下。
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <opencv/cvaux.h>
#include <opencv2/core/core.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace std;
/**
* Perform one thinning iteration.
* Normally you wouldn't call this function directly from your code.
*
* Parameters:
* im Binary image with range = [0,1]
* iter 0=even, 1=odd
*/
void thinningIteration(cv::Mat& img, int iter)
{
CV_Assert(img.channels() == 1);
CV_Assert(img.depth() != sizeof(uchar));
CV_Assert(img.rows > 3 && img.cols > 3);
cv::Mat marker = cv::Mat::zeros(img.size(), CV_8UC1);
int nRows = img.rows;
int nCols = img.cols;
if (img.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
int x, y;
uchar *pAbove;
uchar *pCurr;
uchar *pBelow;
uchar *nw, *no, *ne; // north (pAbove)
uchar *we, *me, *ea;
uchar *sw, *so, *se; // south (pBelow)
uchar *pDst;
// initialize row pointers
pAbove = NULL;
pCurr = img.ptr<uchar>(0);
pBelow = img.ptr<uchar>(1);
for (y = 1; y < img.rows - 1; ++y) {
// shift the rows up by one
pAbove = pCurr;
pCurr = pBelow;
pBelow = img.ptr<uchar>(y + 1);
pDst = marker.ptr<uchar>(y);
// initialize col pointers
no = &(pAbove[0]);
ne = &(pAbove[1]);
me = &(pCurr[0]);
ea = &(pCurr[1]);
so = &(pBelow[0]);
se = &(pBelow[1]);
for (x = 1; x < img.cols - 1; ++x) {
// shift col pointers left by one (scan left to right)
nw = no;
no = ne;
ne = &(pAbove[x + 1]);
we = me;
me = ea;
ea = &(pCurr[x + 1]);
sw = so;
so = se;
se = &(pBelow[x + 1]);
int A = (*no == 0 && *ne == 1) + (*ne == 0 && *ea == 1) +
(*ea == 0 && *se == 1) + (*se == 0 && *so == 1) +
(*so == 0 && *sw == 1) + (*sw == 0 && *we == 1) +
(*we == 0 && *nw == 1) + (*nw == 0 && *no == 1);
int B = *no + *ne + *ea + *se + *so + *sw + *we + *nw;
int m1 = iter == 0 ? (*no * *ea * *so) : (*no * *ea * *we);
int m2 = iter == 0 ? (*ea * *so * *we) : (*no * *so * *we);
if (A == 1 && (B >= 2 && B <= 6) && m1 == 0 && m2 == 0)
pDst[x] = 1;
}
}
img &= ~marker;
}
/**
* Function for thinning the given binary image
*
* Parameters:
* src The source image, binary with range = [0,255]
* dst The destination image
*/
void thinning(const cv::Mat& src, cv::Mat& dst)
{
dst = src.clone();
dst /= 255; // convert to binary image
cv::Mat prev = cv::Mat::zeros(dst.size(), CV_8UC1);
cv::Mat diff;
do {
thinningIteration(dst, 0);
thinningIteration(dst, 1);
cv::absdiff(dst, prev, diff);
dst.copyTo(prev);
} while (cv::countNonZero(diff) > 0);
dst *= 255;
}
/**
* This is an example on how to call the thinning funciton above
*/
int main()
{
cv::Mat src = cv::imread("G:\\realimage9.jpg");
/*Mat image = imread("G:\\realimage.jpg", CV_LOAD_IMAGE_UNCHANGED);*/
if (!src.data)
return -1;
cv::Mat bw;
cv::cvtColor(src, bw, CV_BGR2GRAY);
// /*dilate(bw, bw, Mat(), Point(-1, -1), 4);
// erode(bw, bw, Mat(), Point(-1, -1), 2);*/
GaussianBlur(bw, bw, cv::Size(9, 9), 2, 2);
cv::imshow("blur", bw);
cv::threshold(bw, bw, 10, 255, CV_THRESH_BINARY_INV);
cv::imshow("convert", bw);
thinning(bw, bw);
cv::imshow("src", src);
cv::imshow("dst", bw);
cv::waitKey();
return 0;
}
这不够顺利。我在这里使用了zhang-suen-thinning算法。我从互联网上得到了这个代码。我是新手,打开cv和C ++。我被困在这里。我的下一步是提取端点,孔等功能。因此,有些人可以帮助我获得更好的平滑骨架图像。
答案 0 :(得分:3)
这是一个悬而未决的问题。
这是一篇论文加上一个在网络上运行的java程序,可以或多或少地执行你想要的程序。但它应该被认为是实验性的。
如果您发现this code对您的研究/软件有用,请考虑引用以下出版物:
贡献者AndrésSolísMontero和Jochen Lang。 Skeleton pruning by contour approximation and the integer medial axis transform。 计算机与计算机图形,Elsevier,2012。