选择Pandas中感兴趣的行之前和之后的行

时间:2017-02-09 21:55:48

标签: python pandas indexing selection

假设我有一个带有分类变量和值的时间序列数据帧:

In [4]: df = pd.DataFrame(data={'category': np.random.choice(['A', 'B', 'C', 'D'], 11), 'value': np.random.rand(11)}, index=pd.date_range('2015-04-20','2015-04-30'))

In [5]: df
Out[5]:
           category     value
2015-04-20        D  0.220804
2015-04-21        A  0.992445
2015-04-22        A  0.743648
2015-04-23        B  0.337535
2015-04-24        B  0.747340
2015-04-25        B  0.839823
2015-04-26        D  0.292628
2015-04-27        D  0.906340
2015-04-28        B  0.244044
2015-04-29        A  0.070764
2015-04-30        D  0.132221

如果我对类别为A的行感兴趣,过滤以隔离它们是微不足道的。但是如果我对 类别A之前的n行 感兴趣呢?如果n = 2,我希望看到类似的东西:

In [5]: df[some boolean indexing]
Out[5]:
           category     value
2015-04-20        D  0.220804
2015-04-21        A  0.992445
2015-04-22        A  0.743648
2015-04-27        D  0.906340
2015-04-28        B  0.244044
2015-04-29        A  0.070764

同样,如果我对n行 类别A感兴趣怎么办?再次,如果n = 2,我想看到这个:

In [5]: df[some other boolean indexing]
Out[5]:
           category     value
2015-04-20        D  0.220804
2015-04-21        A  0.992445
2015-04-22        A  0.743648
2015-04-23        B  0.337535
2015-04-24        B  0.747340
2015-04-27        D  0.906340
2015-04-28        B  0.244044
2015-04-29        A  0.070764
2015-04-30        D  0.132221

谢谢!

2 个答案:

答案 0 :(得分:4)

回答你的第一个问题:

df[pd.concat([df.category.shift(-i)=='A' for i in range(n)], axis=1).any(axis=1)]

您希望能够扩展相同(可能有点笨拙)的方法来覆盖更多案例。

答案 1 :(得分:3)

  类别A的

n行:

In [223]: idx = df.index.get_indexer_for(df[df.category=='A'].index)

In [224]: n = 1

In [225]: df.iloc[np.unique(np.concatenate([np.arange(max(i-n,0), min(i+n+1, len(df)))
                                            for i in idx]))]
Out[225]:
           category     value
2015-04-20        D  0.220804
2015-04-21        A  0.992445
2015-04-22        A  0.743648
2015-04-23        B  0.337535
2015-04-28        B  0.244044
2015-04-29        A  0.070764
2015-04-30        D  0.132221

In [226]: n = 2

In [227]: df.iloc[np.unique(np.concatenate([np.arange(max(i-n,0), min(i+n+1, len(df)))
                                            for i in idx]))]
Out[227]:
           category     value
2015-04-20        D  0.220804
2015-04-21        A  0.992445
2015-04-22        A  0.743648
2015-04-23        B  0.337535
2015-04-24        B  0.747340
2015-04-27        D  0.906340
2015-04-28        B  0.244044
2015-04-29        A  0.070764
2015-04-30        D  0.132221