选择pandas数据帧中某个条目之前的所有行

时间:2017-09-23 05:16:53

标签: python pandas dataframe

如何选择首先出现列中某个值之前的行?

我有一个用户活动数据集,其时间戳记录如下:

df = pd.DataFrame([{'user_id':1, 'date':'2017-09-01', 'activity':'Open'},
                   {'user_id':1, 'date':'2017-09-02', 'activity':'Open'}
                   {'user_id':1, 'date':'2017-09-03', 'activity':'Open'}
                   {'user_id':1, 'date':'2017-09-04', 'activity':'Click'}
                   {'user_id':1, 'date':'2017-09-05', 'activity':'Purchase'}
                   {'user_id':1, 'date':'2017-09-06', 'activity':'Open'}
                   {'user_id':1, 'date':'2017-09-07', 'activity':'Open'}
                   {'user_id':2, 'date':'2017-09-04', 'activity':'Open'}
                   {'user_id':2, 'date':'2017-09-06', 'activity':'Purchase'})]

有没有办法从数据框中为每个用户选择第一次购买之前发生的所有行?在此示例中,期望输出将是

df = pd.DataFrame([{'user_id':1, 'date':'2017-09-01', 'activity':'Open'},
                   {'user_id':1, 'date':'2017-09-02', 'activity':'Open'}
                   {'user_id':1, 'date':'2017-09-03', 'activity':'Open'}
                   {'user_id':1, 'date':'2017-09-04', 'activity':'Click'}
                   {'user_id':2, 'date':'2017-09-04', 'activity':'Open'})]

3 个答案:

答案 0 :(得分:3)

使用groupby并查找用户购买某个项目的行上方的所有行。然后,使用掩码进行索引。

df
   activity        date  user_id
0      Open  2017-09-01        1
1      Open  2017-09-02        1
2      Open  2017-09-03        1
3     Click  2017-09-04        1
4  Purchase  2017-09-05        1
5      Open  2017-09-06        1
6      Open  2017-09-07        1
7      Open  2017-09-04        2
8  Purchase  2017-09-06        2

m = df.groupby('user_id').activity\
        .apply(lambda x: (x == 'Purchase').cumsum()) == 0
df[m]

  activity        date  user_id
0     Open  2017-09-01        1
1     Open  2017-09-02        1
2     Open  2017-09-03        1
3    Click  2017-09-04        1
7     Open  2017-09-04        2

如果您的实际数据不像此处那样排序,您可以使用df.sort_values并确保它是:

df = df.sort_values(['user_id', 'date'])

答案 1 :(得分:3)

您可以避免明确申请

In [2862]: df[df['activity'].eq('Purchase').groupby(df['user_id']).cumsum().eq(0)]
Out[2862]:
  activity        date  user_id
0     Open  2017-09-01        1
1     Open  2017-09-02        1
2     Open  2017-09-03        1
3    Click  2017-09-04        1
7     Open  2017-09-04        2

答案 2 :(得分:1)

mask使用groupby DataFrameGroupBy.cumsum,转换为bool,反转条件并按boolean indexing过滤:

#if necessary
#df = df.sort_values(['user_id', 'date'])
df = df[~df['activity'].eq('Purchase').groupby(df['user_id']).cumsum().astype(bool)]
print (df)
   user_id        date activity
0        1  2017-09-01     Open
1        1  2017-09-02     Open
2        1  2017-09-03     Open
3        1  2017-09-04    Click
7        2  2017-09-04     Open

详情:

print (~df['activity'].eq('Purchase').groupby(df['user_id']).cumsum().astype(bool))
0     True
1     True
2     True
3     True
4    False
5    False
6    False
7     True
8    False
Name: activity, dtype: bool