获取pandas中某个索引值之前和之后的行数

时间:2015-04-23 09:45:12

标签: python pandas

我们说我有以下内容:

In [1]: import pandas as pd
        import numpy as np
        df = pd.DataFrame(data=np.random.rand(11),index=pd.date_range('2015-04-20','2015-04-30'),columns=['A'])
Out[1]: 
               A
2015-04-20  0.694983
2015-04-21  0.393851
2015-04-22  0.690138
2015-04-23  0.674222
2015-04-24  0.763175
2015-04-25  0.761917
2015-04-26  0.999274
2015-04-27  0.907871
2015-04-28  0.464818
2015-04-29  0.005733
2015-04-30  0.806351

我有一些复杂的方法可以将单个索引标识为有趣,例如' 2015-04-25'我可以使用以下命令检索具有该索引的行:

In [2]: df.loc['2015-04-25']
Out[2]: 
A    0.761917
Name: 2015-04-25 00:00:00, dtype: float64

在索引值之前和/或之后获取n行数的最佳方法是什么?

我想做的是:

In[3]: df.getRowsBeforeLoc('2015-04-25',3)
Out[3]:
2015-04-22  0.690138
2015-04-23  0.674222
2015-04-24  0.763175
2015-04-25  0.761917

或等效地:

In[3]: df.getRowsAfterLoc('2015-04-25',3)
Out[3]:
2015-04-25  0.761917
2015-04-26  0.999274
2015-04-27  0.907871
2015-04-28  0.464818

(我对于是否包含与目标索引值本身对应的行没有强烈的意见。)

1 个答案:

答案 0 :(得分:18)

loc支持切换beg / end点包含在范围内:

In [363]:

df.loc[:'2015-04-25']
Out[363]:
                   A
2015-04-25  0.141787
2015-04-26  0.598237
2015-04-27  0.106461
2015-04-28  0.297159
2015-04-29  0.058392
2015-04-30  0.621325
In [364]:

df.loc['2015-04-25':]
Out[364]:
                   A
2015-04-25  0.141787
2015-04-26  0.598237
2015-04-27  0.106461
2015-04-28  0.297159
2015-04-29  0.058392
2015-04-30  0.621325

要获取第一行/最后一行(n),请使用head / tail

In [378]:

df.loc[:'2015-04-25'].head(3)
Out[378]:
                   A
2015-04-20  0.827699
2015-04-21  0.901140
2015-04-22  0.427304

In [377]:

df.loc[:'2015-04-25'].tail(3)
Out[377]:
                   A
2015-04-23  0.002189
2015-04-24  0.041965
2015-04-25  0.141787

<强>更新

要获取特定值之前/之后的行,我们可以在索引上使用get_loc返回整数位置,然后将其与iloc一起使用以获取上一行/下一行:

In [388]:

df.index.get_loc('2015-04-25')
Out[388]:
5
In [391]:

df.iloc[df.index.get_loc('2015-04-25')-1]
Out[391]:
A    0.041965
Name: 2015-04-24 00:00:00, dtype: float64
In [392]:

df.iloc[df.index.get_loc('2015-04-25')+1]
Out[392]:
A    0.598237
Name: 2015-04-26 00:00:00, dtype: float64