Java:将N 2d数组附加到单个2d数组中的有效方法

时间:2017-02-05 00:00:56

标签: java arrays performance multidimensional-array

提前感谢您的帮助。

我有N 2d阵列具有完全相同的尺寸。我想将它们组合成一个2d数组。下面是一个只有2个2d数组的例子

array1 = [[1 2]
          [3 4]
          [5 6]]

array2 = [[7 8]
          [9 1]
          [2 3]]

result = [[1 2 7 8]
          [3 4 9 1]
          [5 6 2 3]]

最有效的方法是什么?这些阵列可能非常大,在某些情况下大约为20x10000。天真的方法是使用for循环,但这绝对是低效的,特别是因为我想要相当频繁地执行此操作。我怀疑我还可以在构建方法中使用一些java(可能是Arrays类?)。但是,有很多不同的方法可以做到这一点。考虑到这一点,最有效的方法是什么?

3 个答案:

答案 0 :(得分:2)

数组可以解释为具有行和列的矩阵。目标是创建一个结果矩阵,其中每一行都是所有输入矩阵的相应行的串联。

对于每一行,这基本上可以分为两个步骤:

  • 从所有输入数组中选择相应的行
  • 将这些行合并为一个结果行

问题的核心是:将多个数组连接成一个数组的最有效方法是什么? (反过来,可以被视为问题的概括:连接两个数组的最有效方法是什么?)

对于原始数组(例如,int[]数组),我可以想到三种基本方法:

  • 使用System.arraycopy

    private static int[] combineWithArraycopy(int[]... arrays)
    {
        // Assuming the same length for all arrays!
        int length = arrays[0].length;
        int result[] = new int[arrays.length * length];
        for (int i = 0; i < arrays.length; i++)
        {
            System.arraycopy(arrays[i], 0, result, i * length, length);
        }
        return result;
    }
    
  • 使用IntBuffer

    private static int[] combineWithBuffer(int[]... arrays)
    {
        // Assuming the same length for all arrays!
        int length = arrays[0].length;
        int result[] = new int[arrays.length * length];
        IntBuffer buffer = IntBuffer.wrap(result);
        for (int i = 0; i < arrays.length; i++)
        {
            buffer.put(arrays[i]);
        }
        return result;
    }
    
  • 使用IntStream

    private static int[] combineWithStreams(int[] ... arrays)
    {
        return Stream.of(arrays).flatMapToInt(IntStream::of).toArray();
    }
    

直观地说,我会把我的赌注押在System.arraycopy上。它基本上没有开销,归结为计算机可以执行的最基本操作之一 - 即:将内存从此处复制到那里。

旁注:在您的特定情况下,还有另一种可能的优化选项。即,为所有行并行调用此方法。但由于操作仅受内存限制,并且内存传输速度在很大程度上与CPU数量无关,因此这可能没有明显的影响。

这是一个比较三种方法的例子。

这不是一个完全可靠的基准

但它考虑了一些微基准测试最佳实践,并粗略估计了人们可以期待的性能:

import java.nio.IntBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Locale;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.function.Function;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class ArraycopyStreamPerformance
{
    public static void main(String[] args)
    {
        basicTest();

        int runs = 100;
        int minNum = 2;
        int maxNum = 8;
        int minRows = 2;
        int maxRows = 20;
        int minCols = 100;
        int maxCols = 10000;
        for (int num = minNum; num <= maxNum; num *= 2)
        {
            for (int rows = minRows; rows <= maxRows; rows += 2)
            {
                for (int cols = minCols; cols <= maxCols; cols *= 10)
                {
                    runTest(num, rows, cols, runs);
                }
            }
        }
    }

    private static void runTest(int num, int rows, int cols, int runs)
    {
        int arrays[][][] = new int[num][rows][cols];

        long before = 0;
        long after = 0;

        int blackHole = 0;

        // arraycopy
        before = System.nanoTime();
        for (int i = 0; i < runs; i++)
        {
            int resultA[][] = combineRows(
                ArraycopyStreamPerformance::combineWithArraycopy, arrays);
            blackHole += resultA[0][0];
        }
        after = System.nanoTime();

        System.out.printf(Locale.ENGLISH, 
            "%2d arrays, %3d rows, %6d cols, arraycopy         : %8.3fms\n", 
            num, rows, cols, (after - before) / 1e6);


        // arraycopy parallel
        before = System.nanoTime();
        for (int i = 0; i < runs; i++)
        {
            int resultA[][] = combineRowsParallel(
                ArraycopyStreamPerformance::combineWithArraycopy, arrays);
            blackHole += resultA[0][0];
        }
        after = System.nanoTime();

        System.out.printf(Locale.ENGLISH, 
            "%2d arrays, %3d rows, %6d cols, arraycopy parallel: %8.3fms\n", 
            num, rows, cols, (after - before) / 1e6);


        // buffer
        before = System.nanoTime();
        for (int i = 0; i < runs; i++)
        {
            int resultB[][] = combineRows(
                ArraycopyStreamPerformance::combineWithBuffer, arrays);
            blackHole += resultB[0][0];
        }
        after = System.nanoTime();

        System.out.printf(Locale.ENGLISH, 
            "%2d arrays, %3d rows, %6d cols, buffer            : %8.3fms\n", 
            num, rows, cols, (after - before) / 1e6);


        // buffer parallel
        before = System.nanoTime();
        for (int i = 0; i < runs; i++)
        {
            int resultB[][] = combineRowsParallel(
                ArraycopyStreamPerformance::combineWithBuffer, arrays);
            blackHole += resultB[0][0];
        }
        after = System.nanoTime();

        System.out.printf(Locale.ENGLISH, 
            "%2d arrays, %3d rows, %6d cols, buffer    parallel: %8.3fms\n", 
            num, rows, cols, (after - before) / 1e6);


        // streams
        before = System.nanoTime();
        for (int i = 0; i < runs; i++)
        {
            int resultC[][] = combineRows(
                ArraycopyStreamPerformance::combineWithStreams, arrays);
            blackHole += resultC[0][0];
        }
        after = System.nanoTime();

        System.out.printf(Locale.ENGLISH, 
            "%2d arrays, %3d rows, %6d cols, stream            : %8.3fms (" + 
            blackHole + ")\n", num, rows, cols, (after - before) / 1e6);
    }



    private static void basicTest()
    {
        int array1[][] =
        {
            { 1, 2 },
            { 3, 4 },
            { 5, 6 } 
        };

        int array2[][] =
        {
            { 7, 8 },
            { 9, 1 },
            { 2, 3 } 
        };

        int result[][] =
        {
            { 1, 2, 7, 8 },
            { 3, 4, 9, 1 },
            { 5, 6, 2, 3 } 
        };
        System.out.println(Arrays.deepToString(result));

        int resultA[][] = combineRows(
            ArraycopyStreamPerformance::combineWithArraycopy, array1, array2);
        System.out.println(Arrays.deepToString(resultA));
        int resultB[][] = combineRows(
            ArraycopyStreamPerformance::combineWithBuffer, array1, array2);
        System.out.println(Arrays.deepToString(resultB));
        int resultC[][] = combineRows(
            ArraycopyStreamPerformance::combineWithStreams, array1, array2);
        System.out.println(Arrays.deepToString(resultC));
    }




    private static int[][] selectRows(int row, int[][]... arrays)
    {
        int result[][] = new int[arrays.length][];
        for (int j = 0; j < arrays.length; j++)
        {
            result[j] = arrays[j][row];
        }
        return result;
    }

    private static int[][] combineRows(
        Function<int[][], int[]> mergeFunction, int[][]... arrays)
    {
        int rows = arrays[0].length;
        int result[][] = new int[rows][];
        for (int i = 0; i < rows; i++)
        {
            result[i] = mergeFunction.apply(selectRows(i, arrays));
        }
        return result;
    }

    private static int[] combineWithArraycopy(int[]... arrays)
    {
        // Assuming the same length for all arrays!
        int length = arrays[0].length;
        int result[] = new int[arrays.length * length];
        for (int i = 0; i < arrays.length; i++)
        {
            System.arraycopy(arrays[i], 0, result, i * length, length);
        }
        return result;
    }

    private static int[] combineWithBuffer(int[]... arrays)
    {
        // Assuming the same length for all arrays!
        int length = arrays[0].length;
        int result[] = new int[arrays.length * length];
        IntBuffer buffer = IntBuffer.wrap(result);
        for (int i = 0; i < arrays.length; i++)
        {
            buffer.put(arrays[i]);
        }
        return result;
    }

    private static int[] combineWithStreams(int[] ... arrays)
    {
        return Stream.of(arrays).flatMapToInt(IntStream::of).toArray();
    }



    private static final ExecutorService EXECUTOR_SERVICE =
        createFixedTimeoutExecutorService(
            Runtime.getRuntime().availableProcessors(), 5, TimeUnit.SECONDS);

    public static ExecutorService createFixedTimeoutExecutorService(
        int poolSize, long keepAliveTime, TimeUnit timeUnit)
    {
        ThreadPoolExecutor e = 
            new ThreadPoolExecutor(poolSize, poolSize,
                keepAliveTime, timeUnit, new LinkedBlockingQueue<Runnable>());
        e.allowCoreThreadTimeOut(true);
        return e;
    }

    private static int[][] combineRowsParallel(
        Function<int[][], int[]> mergeFunction, int[][]... arrays)
    {
        int rows = arrays[0].length;
        int result[][] = new int[rows][];
        List<Callable<Object>> tasks = new ArrayList<Callable<Object>>();
        for (int i = 0; i < rows; i++)
        {
            int index = i;
            tasks.add(Executors.callable(() ->
            {
                result[index] = mergeFunction.apply(selectRows(index, arrays));
            }));
        }
        try
        {
            EXECUTOR_SERVICE.invokeAll(tasks);
        }
        catch (InterruptedException e)
        {
            Thread.currentThread().interrupt();
        }
        return result;
    }

}

我(旧的,慢的)PC上的输出是这样的:

 ...
 8 arrays,  20 rows,  10000 cols, arraycopy         :  354.977ms
 8 arrays,  20 rows,  10000 cols, arraycopy parallel:  327.749ms
 8 arrays,  20 rows,  10000 cols, buffer            :  328.717ms
 8 arrays,  20 rows,  10000 cols, buffer    parallel:  312.522ms
 8 arrays,  20 rows,  10000 cols, stream            : 2044.017ms (0)

显示并行化不会带来值得努力的加速,并且通常,基于arraycopyIntBuffer的方法具有大致相同的性能。

YMMV。如果有人有耐心为此进行JMH运行,我会很感激。

答案 1 :(得分:0)

试试这个。

static int[][] append(int[][]... matrices) {
    int size = matrices.length;
    int rows = matrices[0].length;
    int cols = matrices[0][0].length;
    int[][] result = new int[rows][cols * size];
    for (int i = 0; i < rows; ++i)
        for (int j = 0, k = 0; j < size; ++j, k += cols)
            System.arraycopy(matrices[j][i], 0, result[i], k, cols);
    return result;
}

int[][] a = {{1, 2}, {3, 4}, {5, 6}};
int[][] b = {{7, 8}, {9, 1}, {2, 3}};
int[][] result = append(a, b);
for (int[] e : result)
    System.out.println(Arrays.toString(e));

结果:

[1, 2, 7, 8]
[3, 4, 9, 1]
[5, 6, 2, 3]

答案 2 :(得分:-1)

在我看来,使用带有这种数组的for循环比使用流或列表更好。

但这只是我的意见......

我是多线程的(由于线程创建开销,这对小型数组来说太过分了)。即使对于大小为20 * 10000的数组,多线程也可能是一种过度杀伤;但是,如果需要多次执行,则可以使用executorService。但这取决于你的需求......

以下是一个例子:

public static void main(String[] args) {
    test(100, 20, 3);
    test(7, 3, 4);
    test(3,7,4);
}

private static void test(int outerSize, int innerSize, int numberOfArrays) {
    int[][][] arrays = new int[numberOfArrays][outerSize][innerSize];
    int[][] resultArray;
    int counter = 0;
    System.out.println("Testing " + numberOfArrays + " arrays, " + outerSize + " by " + innerSize);
    for (int arrayIndex = 0; arrayIndex < numberOfArrays; arrayIndex++)
        for (int outerIndex = 0; outerIndex < outerSize; outerIndex++) {
            for (int innerIndex = 0; innerIndex < innerSize; innerIndex++) {
                arrays[arrayIndex][outerIndex][innerIndex] = counter++;
            }
        }
    // Change number of threads here;
    resultArray = new ArrayCombiner(5, arrays).combine();
    System.out.println(Arrays.deepToString(resultArray));
}

static class ArrayCombiner {
    private final int[][][] sources;
    private final int[][] resultArray;
    private final int innerSourceLength, outerSourceLength, numberOfThreads;

    public ArrayCombiner(int numberOfThreads, int[][]... sources) {
        this.sources = sources;
        this.numberOfThreads = numberOfThreads;
        resultArray = new int[outerSourceLength = sources[0].length][(innerSourceLength = sources[0][0].length)
                * sources.length];
    }

    public int[][] combine() {
        if (numberOfThreads <= 1) {
            combinePortion(0, outerSourceLength);
        } else {
            Thread[] threads = new Thread[numberOfThreads];
            for (int i = 0; i < numberOfThreads; i++) {
                (threads[(int) i] = new Thread(runnableToCombinePortion(i))).start();
            }
            for (int i = 0; i < numberOfThreads; i++) {
                try {
                    threads[i].join();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
        return resultArray;
    }

    private Runnable runnableToCombinePortion(int threadIndex) {
        int outerFrom = (int) ((float) threadIndex / numberOfThreads * outerSourceLength),
                outerTo = (int) ((float) (1 + threadIndex) / numberOfThreads * outerSourceLength);
        return () -> {
            combinePortion(outerFrom, outerTo);
        };
    }

    private void combinePortion(int outerFrom, int outerTo) {
        for (int outerIndex = outerFrom; outerIndex < outerTo; outerIndex++) {
            for (int sourceIndex = 0; sourceIndex < sources.length; sourceIndex++) {
                System.arraycopy(sources[sourceIndex][outerIndex], 0, resultArray[outerIndex],
                        sourceIndex * innerSourceLength, innerSourceLength);
            }
        }
    }
}