我目前正在尝试处理具有缺失值的实验时间序列数据集。我想计算该数据集随时间的滑动窗口平均值,同时处理nan值。我这样做的正确方法是在每个窗口内计算有限元的总和,并将其除以它们的数字。这种非线性迫使我使用非卷积方法来解决这个问题,因此我在这个过程中遇到了严重的时间瓶颈。作为我想要完成的代码示例,我提出以下内容:
import numpy as np
#Construct sample data
n = 50
n_miss = 20
win_size = 3
data= np.random.random(50)
data[np.random.randint(0,n-1, n_miss)] = None
#Compute mean
result = np.zeros(data.size)
for count in range(data.size):
part_data = data[max(count - (win_size - 1) / 2, 0): min(count + (win_size + 1) / 2, data.size)]
mask = np.isfinite(part_data)
if np.sum(mask) != 0:
result[count] = np.sum(part_data[mask]) / np.sum(mask)
else:
result[count] = None
print 'Input:\t',data
print 'Output:\t',result
带输出:
Input: [ 0.47431791 0.17620835 0.78495647 0.79894688 0.58334064 0.38068788
0.87829696 nan 0.71589171 nan 0.70359557 0.76113969
0.13694387 0.32126573 0.22730891 nan 0.35057169 nan
0.89251851 0.56226354 0.040117 nan 0.37249799 0.77625334
nan nan nan nan 0.63227417 0.92781944
0.99416471 0.81850753 0.35004997 nan 0.80743783 0.60828597
nan 0.01410721 nan nan 0.6976317 nan
0.03875394 0.60924066 0.22998065 nan 0.34476729 0.38090961
nan 0.2021964 ]
Output: [ 0.32526313 0.47849424 0.5867039 0.72241466 0.58765847 0.61410849
0.62949242 0.79709433 0.71589171 0.70974364 0.73236763 0.53389305
0.40644977 0.22850617 0.27428732 0.2889403 0.35057169 0.6215451
0.72739103 0.49829968 0.30119027 0.20630749 0.57437567 0.57437567
0.77625334 nan nan 0.63227417 0.7800468 0.85141944
0.91349722 0.7209074 0.58427875 0.5787439 0.7078619 0.7078619
0.31119659 0.01410721 0.01410721 0.6976317 0.6976317 0.36819282
0.3239973 0.29265842 0.41961066 0.28737397 0.36283845 0.36283845
0.29155301 0.2021964 ]
这个结果可以通过numpy操作生成,而不使用for循环吗?
答案 0 :(得分:5)
您可以使用Pandas的rolling
功能执行此操作:
let promiseCount = 1;
function create() {
let n = promiseCount++;
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(n);
resolve();
}, 500 * n);
});
}
let groups = [
[create(), create(), create()],
[create(), create(), create()],
[create(), create(), create()]
];
(function runGroup(i) {
if (i < groups.length) {
Promise.all(groups[i])
.then(() => {
console.log('Group', i + 1, 'complete');
runGroup(i + 1);
});
}
})(0);
输出:
import numpy as np
import pandas as pd
#Construct sample data
n = 50
n_miss = 20
win_size = 3
data = np.random.random(n)
data[np.random.randint(0, n-1, n_miss)] = None
windowed_mean = pd.Series(data).rolling(window=win_size, min_periods=1).mean()
print(pd.DataFrame({'Data': data, 'Windowed mean': windowed_mean}) )
答案 1 :(得分:3)
这是使用np.convolve
-
mask = np.isnan(data)
K = np.ones(win_size,dtype=int)
out = np.convolve(np.where(mask,0,data), K)/np.convolve(~mask,K)
请注意,这将在任何一方都有一个额外的元素。
如果您使用的是2D
数据,我们可以使用Scipy's 2D convolution
。
方法 -
def original_app(data, win_size):
#Compute mean
result = np.zeros(data.size)
for count in range(data.size):
part_data = data[max(count - (win_size - 1) / 2, 0): \
min(count + (win_size + 1) / 2, data.size)]
mask = np.isfinite(part_data)
if np.sum(mask) != 0:
result[count] = np.sum(part_data[mask]) / np.sum(mask)
else:
result[count] = None
return result
def numpy_app(data, win_size):
mask = np.isnan(data)
K = np.ones(win_size,dtype=int)
out = np.convolve(np.where(mask,0,data), K)/np.convolve(~mask,K)
return out[1:-1] # Slice out the one-extra elems on sides
示例运行 -
In [118]: #Construct sample data
...: n = 50
...: n_miss = 20
...: win_size = 3
...: data= np.random.random(50)
...: data[np.random.randint(0,n-1, n_miss)] = np.nan
...:
In [119]: original_app(data, win_size = 3)
Out[119]:
array([ 0.88356487, 0.86829731, 0.85249541, 0.83776219, nan,
nan, 0.61054015, 0.63111926, 0.63111926, 0.65169837,
0.1857301 , 0.58335324, 0.42088104, 0.5384565 , 0.31027752,
0.40768907, 0.3478563 , 0.34089655, 0.55462903, 0.71784816,
0.93195716, nan, 0.41635575, 0.52211653, 0.65053379,
0.76762282, 0.72888574, 0.35250449, 0.35250449, 0.14500637,
0.06997668, 0.22582318, 0.18621848, 0.36320784, 0.19926647,
0.24506199, 0.09983572, 0.47595439, 0.79792941, 0.5982114 ,
0.42389375, 0.28944089, 0.36246113, 0.48088139, 0.71105449,
0.60234163, 0.40012839, 0.45100475, 0.41768466, 0.41768466])
In [120]: numpy_app(data, win_size = 3)
__main__:36: RuntimeWarning: invalid value encountered in divide
Out[120]:
array([ 0.88356487, 0.86829731, 0.85249541, 0.83776219, nan,
nan, 0.61054015, 0.63111926, 0.63111926, 0.65169837,
0.1857301 , 0.58335324, 0.42088104, 0.5384565 , 0.31027752,
0.40768907, 0.3478563 , 0.34089655, 0.55462903, 0.71784816,
0.93195716, nan, 0.41635575, 0.52211653, 0.65053379,
0.76762282, 0.72888574, 0.35250449, 0.35250449, 0.14500637,
0.06997668, 0.22582318, 0.18621848, 0.36320784, 0.19926647,
0.24506199, 0.09983572, 0.47595439, 0.79792941, 0.5982114 ,
0.42389375, 0.28944089, 0.36246113, 0.48088139, 0.71105449,
0.60234163, 0.40012839, 0.45100475, 0.41768466, 0.41768466])
运行时测试 -
In [122]: #Construct sample data
...: n = 50000
...: n_miss = 20000
...: win_size = 3
...: data= np.random.random(n)
...: data[np.random.randint(0,n-1, n_miss)] = np.nan
...:
In [123]: %timeit original_app(data, win_size = 3)
1 loops, best of 3: 1.51 s per loop
In [124]: %timeit numpy_app(data, win_size = 3)
1000 loops, best of 3: 1.09 ms per loop
In [125]: import pandas as pd
# @jdehesa's pandas solution
In [126]: %timeit pd.Series(data).rolling(window=3, min_periods=1).mean()
100 loops, best of 3: 3.34 ms per loop