Python:binned_statistic_2d意味着忽略数据中的NaN的计算

时间:2017-07-21 21:14:50

标签: python numpy nan binning

我正在使用scipy.stats.binned_statistic_2d通过查找每个bin中的点的平均值将不规则数据存储到统一网格中。

x,y = np.meshgrid(sort(np.random.uniform(0,1,100)),sort(np.random.uniform(0,1,100)))
z = np.sin(x*y)

statistic, xedges, yedges, binnumber = sp.stats.binned_statistic_2d(x.ravel(), y.ravel(), values=z.ravel(), statistic='mean',bins=[np.arange(0,1.1,.1), np.arange(0,1.1,.1)])

plt.figure(1)
plt.pcolormesh(x,y,z, vmin = 0, vmax = 1)
plt.figure(2)
plt.pcolormesh(xedges,yedges,statistic, vmin = 0, vmax = 1)

按预期生成这些图:

分散数据: enter image description here

网格数据: enter image description here

但我想要网格的数据中有NaNs。这就是我添加NaN时的结果:

x,y = np.meshgrid(sort(np.random.uniform(0,1,100)),sort(np.random.uniform(0,1,100)))
z = np.sin(x*y)
z[50:55,50:55] = np.nan

statistic, xedges, yedges, binnumber = binned_statistic_2d(x.ravel(), y.ravel(), values=z.ravel(), statistic='mean',bins=[np.arange(0,1.1,.1), np.arange(0,1.1,.1)])

plt.figure(3)
plt.pcolormesh(x,y,z, vmin = 0, vmax = 1)
plt.figure(4)
plt.pcolormesh(xedges,yedges,statistic, vmin = 0, vmax = 1)

散: enter image description here

网格化: enter image description here

显然,如果垃圾箱完全充满了NaN,那么该垃圾箱的平均值应该仍然是NaN。但是,我希望不是完全填充NaNs的箱子只能得到非NaN号码的平均值。

我尝试用sp.stats.binned_statistic_2d替换np.nanmean中的“统计”参数。这可行,但是当我在大型数据集上使用它时,它会变得非常缓慢。我已经尝试深入研究`sp.stats.binned_statistic_2d'的底层代码,但是我无法弄清楚它是如何计算均值的,或者如何让它在计算中忽略NaNs。

有什么想法吗?

1 个答案:

答案 0 :(得分:2)

我遇到了同样的问题,并更改了scipy.stats中的binned_statistic_dd的定义,并保存了本地副本,以便在更新scipy时不会更改它。

我在“ known_stats”列表中添加了“ nanmean”,并且

elif statistic == 'nanmean':
    result.fill(np.nan)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = np.nanmean(values[vv, binnumbers == i])

完整的新定义:

def binned_statistic_dd(sample, values, statistic='mean',
                    bins=10, range=None, expand_binnumbers=False,
                    binned_statistic_result=None):
"""
Compute a multidimensional binned statistic for a set of data.

This is a generalization of a histogramdd function.  A histogram divides
the space into bins, and returns the count of the number of points in
each bin.  This function allows the computation of the sum, mean, median,
or other statistic of the values within each bin.

Parameters
----------
sample : array_like
    Data to histogram passed as a sequence of N arrays of length D, or
    as an (N,D) array.
values : (N,) array_like or list of (N,) array_like
    The data on which the statistic will be computed.  This must be
    the same shape as `sample`, or a list of sequences - each with the
    same shape as `sample`.  If `values` is such a list, the statistic
    will be computed on each independently.
statistic : string or callable, optional
    The statistic to compute (default is 'mean').
    The following statistics are available:

      * 'mean' : compute the mean of values for points within each bin.
        Empty bins will be represented by NaN.
      * 'median' : compute the median of values for points within each
        bin. Empty bins will be represented by NaN.
      * 'count' : compute the count of points within each bin.  This is
        identical to an unweighted histogram.  `values` array is not
        referenced.
      * 'sum' : compute the sum of values for points within each bin.
        This is identical to a weighted histogram.
      * 'std' : compute the standard deviation within each bin. This
        is implicitly calculated with ddof=0. If the number of values
        within a given bin is 0 or 1, the computed standard deviation value
        will be 0 for the bin.
      * 'min' : compute the minimum of values for points within each bin.
        Empty bins will be represented by NaN.
      * 'max' : compute the maximum of values for point within each bin.
        Empty bins will be represented by NaN.
      * function : a user-defined function which takes a 1D array of
        values, and outputs a single numerical statistic. This function
        will be called on the values in each bin.  Empty bins will be
        represented by function([]), or NaN if this returns an error.

bins : sequence or positive int, optional
    The bin specification must be in one of the following forms:

      * A sequence of arrays describing the bin edges along each dimension.
      * The number of bins for each dimension (nx, ny, ... = bins).
      * The number of bins for all dimensions (nx = ny = ... = bins).
range : sequence, optional
    A sequence of lower and upper bin edges to be used if the edges are
    not given explicitly in `bins`. Defaults to the minimum and maximum
    values along each dimension.
expand_binnumbers : bool, optional
    'False' (default): the returned `binnumber` is a shape (N,) array of
    linearized bin indices.
    'True': the returned `binnumber` is 'unraveled' into a shape (D,N)
    ndarray, where each row gives the bin numbers in the corresponding
    dimension.
    See the `binnumber` returned value, and the `Examples` section of
    `binned_statistic_2d`.
binned_statistic_result : binnedStatisticddResult
    Result of a previous call to the function in order to reuse bin edges
    and bin numbers with new values and/or a different statistic.
    To reuse bin numbers, `expand_binnumbers` must have been set to False
    (the default)

    .. versionadded:: 0.17.0

Returns
-------
statistic : ndarray, shape(nx1, nx2, nx3,...)
    The values of the selected statistic in each two-dimensional bin.
bin_edges : list of ndarrays
    A list of D arrays describing the (nxi + 1) bin edges for each
    dimension.
binnumber : (N,) array of ints or (D,N) ndarray of ints
    This assigns to each element of `sample` an integer that represents the
    bin in which this observation falls.  The representation depends on the
    `expand_binnumbers` argument.  See `Notes` for details.


See Also
--------
numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d

Notes
-----
Binedges:
All but the last (righthand-most) bin is half-open in each dimension.  In
other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is
``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``.  The
last bin, however, is ``[3, 4]``, which *includes* 4.

`binnumber`:
This returned argument assigns to each element of `sample` an integer that
represents the bin in which it belongs.  The representation depends on the
`expand_binnumbers` argument. If 'False' (default): The returned
`binnumber` is a shape (N,) array of linearized indices mapping each
element of `sample` to its corresponding bin (using row-major ordering).
If 'True': The returned `binnumber` is a shape (D,N) ndarray where
each row indicates bin placements for each dimension respectively.  In each
dimension, a binnumber of `i` means the corresponding value is between
(bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'.

.. versionadded:: 0.11.0

Examples
--------
>>> from scipy import stats
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D

Take an array of 600 (x, y) coordinates as an example.
`binned_statistic_dd` can handle arrays of higher dimension `D`. But a plot
of dimension `D+1` is required.

>>> mu = np.array([0., 1.])
>>> sigma = np.array([[1., -0.5],[-0.5, 1.5]])
>>> multinormal = stats.multivariate_normal(mu, sigma)
>>> data = multinormal.rvs(size=600, random_state=235412)
>>> data.shape
(600, 2)

Create bins and count how many arrays fall in each bin:

>>> N = 60
>>> x = np.linspace(-3, 3, N)
>>> y = np.linspace(-3, 4, N)
>>> ret = stats.binned_statistic_dd(data, np.arange(600), bins=[x, y],
...                                 statistic='count')
>>> bincounts = ret.statistic

Set the volume and the location of bars:

>>> dx = x[1] - x[0]
>>> dy = y[1] - y[0]
>>> x, y = np.meshgrid(x[:-1]+dx/2, y[:-1]+dy/2)
>>> z = 0

>>> bincounts = bincounts.ravel()
>>> x = x.ravel()
>>> y = y.ravel()

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> with np.errstate(divide='ignore'):   # silence random axes3d warning
...     ax.bar3d(x, y, z, dx, dy, bincounts)

Reuse bin numbers and bin edges with new values:

>>> ret2 = stats.binned_statistic_dd(data, -np.arange(600),
...                                  binned_statistic_result=ret,
...                                  statistic='mean')
"""
known_stats = ['mean', 'median', 'count', 'sum', 'std', 'min', 'max',
               'nanmean']
if not callable(statistic) and statistic not in known_stats:
    raise ValueError('invalid statistic %r' % (statistic,))

try:
    bins = index(bins)
except TypeError:
    # bins is not an integer
    pass
# If bins was an integer-like object, now it is an actual Python int.

# NOTE: for _bin_edges(), see e.g. gh-11365
if isinstance(bins, int) and not np.isfinite(sample).all():
    raise ValueError('%r contains non-finite values.' % (sample,))

# `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`)
# `Dlen` is the length of elements along each dimension.
# This code is based on np.histogramdd
try:
    # `sample` is an ND-array.
    Dlen, Ndim = sample.shape
except (AttributeError, ValueError):
    # `sample` is a sequence of 1D arrays.
    sample = np.atleast_2d(sample).T
    Dlen, Ndim = sample.shape

# Store initial shape of `values` to preserve it in the output
values = np.asarray(values)
input_shape = list(values.shape)
# Make sure that `values` is 2D to iterate over rows
values = np.atleast_2d(values)
Vdim, Vlen = values.shape

# Make sure `values` match `sample`
if(statistic != 'count' and Vlen != Dlen):
    raise AttributeError('The number of `values` elements must match the '
                         'length of each `sample` dimension.')

try:
    M = len(bins)
    if M != Ndim:
        raise AttributeError('The dimension of bins must be equal '
                             'to the dimension of the sample x.')
except TypeError:
    bins = Ndim * [bins]

if binned_statistic_result is None:
    nbin, edges, dedges = _bin_edges(sample, bins, range)
    binnumbers = _bin_numbers(sample, nbin, edges, dedges)
else:
    edges = binned_statistic_result.bin_edges
    nbin = np.array([len(edges[i]) + 1 for i in builtins.range(Ndim)])
    # +1 for outlier bins
    dedges = [np.diff(edges[i]) for i in builtins.range(Ndim)]
    binnumbers = binned_statistic_result.binnumber

result = np.empty([Vdim, nbin.prod()], float)

if statistic == 'mean':
    result.fill(np.nan)
    flatcount = np.bincount(binnumbers, None)
    a = flatcount.nonzero()
    for vv in builtins.range(Vdim):
        flatsum = np.bincount(binnumbers, values[vv])
        result[vv, a] = flatsum[a] / flatcount[a]
elif statistic == 'std':
    result.fill(0)
    flatcount = np.bincount(binnumbers, None)
    a = flatcount.nonzero()
    for vv in builtins.range(Vdim):
        for i in np.unique(binnumbers):
            # NOTE: take std dev by bin, np.std() is 2-pass and stable
            binned_data = values[vv, binnumbers == i]
            # calc std only when binned data is 2 or more for speed up.
            if len(binned_data) >= 2:
                result[vv, i] = np.std(binned_data)
elif statistic == 'count':
    result.fill(0)
    flatcount = np.bincount(binnumbers, None)
    a = np.arange(len(flatcount))
    result[:, a] = flatcount[np.newaxis, :]
elif statistic == 'sum':
    result.fill(0)
    for vv in builtins.range(Vdim):
        flatsum = np.bincount(binnumbers, values[vv])
        a = np.arange(len(flatsum))
        result[vv, a] = flatsum
elif statistic == 'median':
    result.fill(np.nan)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = np.median(values[vv, binnumbers == i])
elif statistic == 'min':
    result.fill(np.nan)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = np.min(values[vv, binnumbers == i])
elif statistic == 'max':
    result.fill(np.nan)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = np.max(values[vv, binnumbers == i])
elif statistic == 'nanmean':
    result.fill(np.nan)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = np.nanmean(values[vv, binnumbers == i])
elif callable(statistic):
    with np.errstate(invalid='ignore'), suppress_warnings() as sup:
        sup.filter(RuntimeWarning)
        try:
            null = statistic([])
        except Exception:
            null = np.nan
    result.fill(null)
    for i in np.unique(binnumbers):
        for vv in builtins.range(Vdim):
            result[vv, i] = statistic(values[vv, binnumbers == i])

# Shape into a proper matrix
result = result.reshape(np.append(Vdim, nbin))

# Remove outliers (indices 0 and -1 for each bin-dimension).
core = tuple([slice(None)] + Ndim * [slice(1, -1)])
result = result[core]

# Unravel binnumbers into an ndarray, each row the bins for each dimension
if(expand_binnumbers and Ndim > 1):
    binnumbers = np.asarray(np.unravel_index(binnumbers, nbin))

if np.any(result.shape[1:] != nbin - 2):
    raise RuntimeError('Internal Shape Error')

# Reshape to have output (`result`) match input (`values`) shape
result = result.reshape(input_shape[:-1] + list(nbin-2))

return BinnedStatisticddResult(result, edges, binnumbers)