我想找到包含字符串的行,如下所示:
DF[DF.col.str.contains("foo")]
但是,这会失败,因为有些元素是NaN:
ValueError:无法使用包含NA / NaN值的向量进行索引
所以我诉诸混淆
DF[DF.col.notnull()][DF.col.dropna().str.contains("foo")]
有更好的方法吗?
答案 0 :(得分:159)
有一面旗帜:
In [11]: df = pd.DataFrame([["foo1"], ["foo2"], ["bar"], [np.nan]], columns=['a'])
In [12]: df.a.str.contains("foo")
Out[12]:
0 True
1 True
2 False
3 NaN
Name: a, dtype: object
In [13]: df.a.str.contains("foo", na=False)
Out[13]:
0 True
1 True
2 False
3 False
Name: a, dtype: bool
请参阅str.replace
文档:
na:默认NaN,缺失值的填充值。
所以你可以做到以下几点:
In [21]: df.loc[df.a.str.contains("foo", na=False)]
Out[21]:
a
0 foo1
1 foo2
答案 1 :(得分:0)
我不是100%的原因(实际上是来这里寻找答案的),但这还是可行的,不需要替换所有的nan值。
import pandas as pd
import numpy as np
df = pd.DataFrame([["foo1"], ["foo2"], ["bar"], [np.nan]], columns=['a'])
newdf = df.loc[df['a'].str.contains('foo') == True]
可以使用或不使用.loc
。
我不知道这为什么行得通,据我了解,当您使用方括号索引时,pandas会将方括号内的内容评估为True
或False
。我不知道为什么在方括号“ extra boolean”中添加该短语完全没有效果。
答案 2 :(得分:0)
您还可以设置样式:
DF[DF.col.str.contains(pat = '(foo)', regex = True) ]
答案 3 :(得分:0)
library(sf)
#> Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
testdf <- data.frame(long = c(-124.0048, -123.9844, -123.9691, -123.9604, -123.9810, -123.9612),
lat = c(45.04352, 45.10493, 45.20530, 45.29999, 45.34960, 45.40917))
testsf = st_as_sf(testdf, coords = c("long", "lat"))
testsf <- st_set_crs(testsf, "+proj=longlat +datum=WGS84")
testsf
#> Simple feature collection with 6 features and 0 fields
#> geometry type: POINT
#> dimension: XY
#> bbox: xmin: -124.0048 ymin: 45.04352 xmax: -123.9604 ymax: 45.40917
#> CRS: +proj=longlat +datum=WGS84
#> geometry
#> 1 POINT (-124.0048 45.04352)
#> 2 POINT (-123.9844 45.10493)
#> 3 POINT (-123.9691 45.2053)
#> 4 POINT (-123.9604 45.29999)
#> 5 POINT (-123.981 45.3496)
#> 6 POINT (-123.9612 45.40917)
utmsf <- st_transform(testsf,"+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83" )
utmsf
#> Simple feature collection with 6 features and 0 fields
#> geometry type: POINT
#> dimension: XY
#> bbox: xmin: 420866.4 ymin: 4988276 xmax: 424783.9 ymax: 5028855
#> CRS: +proj=utm +zone=10 +ellps=GRS80 +datum=NAD83
#> geometry
#> 1 POINT (420866.4 4988276)
#> 2 POINT (422556 4995078)
#> 3 POINT (423893.4 5006214)
#> 4 POINT (424701.9 5016725)
#> 5 POINT (423153.9 5022256)
#> 6 POINT (424783.9 5028855)
答案 4 :(得分:0)
您还可以使用 query
方法通过布尔表达式查询 DataFrame 的列,如下所示:
df.query('a.str.contains("foo", na=False)')
请注意,您可能不会获得性能改进,但它更具可读性(可以说)。
答案 5 :(得分:-2)
import folium
import pandas
data= pandas.read_csv("maps.txt")
lat = list(data["latitude"])
lon = list(data["longitude"])
map= folium.Map(location=[31.5204, 74.3587], zoom_start=6, tiles="Mapbox Bright")
fg = folium.FeatureGroup(name="My Map")
for lt, ln in zip(lat, lon):
c1 = fg.add_child(folium.Marker(location=[lt, ln], popup="Hi i am a Country",icon=folium.Icon(color='green')))
child = fg.add_child(folium.Marker(location=[31.5204, 74.5387], popup="Welcome to Lahore", icon= folium.Icon(color='green')))
map.add_child(fg)
map.save("Lahore.html")
Traceback (most recent call last):
File "C:\Users\Ryan\AppData\Local\Programs\Python\Python36-32\check2.py", line 14, in <module>
c1 = fg.add_child(folium.Marker(location=[lt, ln], popup="Hi i am a Country",icon=folium.Icon(color='green')))
File "C:\Users\Ryan\AppData\Local\Programs\Python\Python36-32\lib\site-packages\folium\map.py", line 647, in __init__
self.location = _validate_coordinates(location)
File "C:\Users\Ryan\AppData\Local\Programs\Python\Python36-32\lib\site-packages\folium\utilities.py", line 48, in _validate_coordinates
'got:\n{!r}'.format(coordinates))
ValueError: Location values cannot contain NaNs, got:
[nan, nan]