如何在极坐标中的半圆形管中绘制笛卡尔坐标系中的曲线?

时间:2017-02-02 18:01:39

标签: python math matplotlib polar-coordinates

import numpy as np
import matplotlib.pylab as plt

def tube():
    theta = np.linspace(0, np.pi/2, 30)

    x = np.cos(theta)
    y = np.sin(theta)
    z = x*0.8
    w = y*0.8

    plt.plot(z,w)
    plt.plot(x,y)
    plt.axis("equal")
    plt.show()

print plt.figure(1);tube()

enter image description here

def euler():
    A, B, a = 40, 10, 2

    t  = 10  # time
    dt = 1e-3 # interval

    nbpt = int(t/dt)

    n = 1
    s = 1. # sign of the derivative, initially chosen
    y = [0]*nbpt # result

    while n < nbpt:
        yp2 = B - A*y[n-1]**a
        if yp2 < 0:
            s = -s
            n -= 1 # recalculating the previous value
        else:
            y[n] = y[n-1] + dt*s*np.sqrt(yp2)
            n += 1

    plt.plot(np.linspace(0,t,nbpt),y)
    plt.show()

print plt.figure(2);euler()

enter image description here

我想在用euler()制作的管中绘制用tube()制作的曲线。我想我必须从笛卡尔坐标到极坐标,但是无论如何都要用Python来简化这个过程吗?

1 个答案:

答案 0 :(得分:1)

有很多方法可以做到这一点,因为这个问题没有完全确定你正在寻找什么样的转型。但是,假设任何变换都会发生,只要结果曲线在管的边界线之间振荡,您可以使用:

def polarmap(x, y):
    # normalize x and y from 0 to 1
    x = (x-x.min())/(x.max()-x.min())
    y = (y-y.min())/(y.max()-y.min())

    # make theta go from 0 to pi/2
    theta = np.pi*x/2

    # make r go from 0.8 to 1.0 (the min and max tube radius)
    r = 0.2*y + 0.8

    # convert polar to cartesian
    x = r*np.cos(theta)
    y = r*np.sin(theta)
    plt.plot(x, y)

例如,

import numpy as np
import matplotlib.pylab as plt


def tube():
    theta = np.linspace(0, np.pi/2, 30)

    x = np.cos(theta)
    y = np.sin(theta)
    z = x*0.8
    w = y*0.8

    plt.plot(z,w)
    plt.plot(x,y)

def euler():
    A, B, a = 40, 10, 2

    t  = 10  # time
    dt = 1e-3 # interval

    nbpt = int(t/dt)

    n = 1
    s = 1. # sign of the derivative, initially chosen
    y = [0]*nbpt # result

    while n < nbpt:
        yp2 = B - A*y[n-1]**a
        if yp2 < 0:
            s = -s
            n -= 1 # recalculating the previous value
        else:
            y[n] = y[n-1] + dt*s*np.sqrt(yp2)
            n += 1

    x = np.linspace(0,t,nbpt)
    y = np.array(y)
    return x, y

def polarmap(x, y):
    # normalize x and y from 0 to 1
    x = (x-x.min())/(x.max()-x.min())
    y = (y-y.min())/(y.max()-y.min())

    # make theta go from 0 to pi/2
    theta = np.pi*x/2

    # make r go from 0.8 to 1.0 (the min and max tube radius)
    r = 0.2*y + 0.8

    # convert polar to cartesian
    x = r*np.cos(theta)
    y = r*np.sin(theta)
    plt.plot(x, y)

fig, ax = plt.subplots()
tube()
x, y = euler()
polarmap(x, y)
plt.axis("equal")
plt.show()

产生 enter image description here

请注意,在polarmap中,第一步是将xy标准化, 它们的范围从0到1.您可以将它们视为相等的参数 立足点。如果在将两个参数传递给polarmap之前交换它们,例如:

x, y = euler()
x, y = y, x    # swap x and y
polarmap(x, y)

然后你得到

enter image description here