numpy数组连接:“ValueError:所有输入数组必须具有相同的维数”

时间:2017-02-01 21:19:31

标签: python numpy

如何连接这些numpy数组?

第一个np.array,形状为(5,4)

[[  6487    400 489580      0]
 [  6488    401 492994      0]
 [  6491    408 489247      0]
 [  6491    408 489247      0]
 [  6492    402 499013      0]]

第二个np.array,形状为(1,5)

[  16.   15.   12.  12.  17. ]

最终结果应为

[[  6487    400    489580    0   16]
 [  6488    401    492994    0   15]
 [  6491    408    489247    0   12]
 [  6491    408    489247    0   12]
 [  6492    402    499013    0   17]]

我试过np.concatenate([array1, array2]) 但是我得到了这个错误

ValueError: all the input arrays must have same number of dimensions

我做错了什么?

3 个答案:

答案 0 :(得分:18)

要使用np.concatenate,我们需要将第二个数组扩展为2D,然后沿axis=1连接 -

np.concatenate((a,b[:,None]),axis=1)

或者,我们可以使用np.column_stack来处理它 -

np.column_stack((a,b))

示例运行 -

In [84]: a
Out[84]: 
array([[54, 30, 55, 12],
       [64, 94, 50, 72],
       [67, 31, 56, 43],
       [26, 58, 35, 14],
       [97, 76, 84, 52]])

In [85]: b
Out[85]: array([56, 70, 43, 19, 16])

In [86]: np.concatenate((a,b[:,None]),axis=1)
Out[86]: 
array([[54, 30, 55, 12, 56],
       [64, 94, 50, 72, 70],
       [67, 31, 56, 43, 43],
       [26, 58, 35, 14, 19],
       [97, 76, 84, 52, 16]])

如果b的{​​{1}} 1D数组dtype=object形状为(1,),则很可能所有数据都包含在其中的唯一元素中,我们需要在连接之前展平。为此,我们也可以使用np.concatenate。这是一个示例运行,以明确指出 -

In [118]: a
Out[118]: 
array([[54, 30, 55, 12],
       [64, 94, 50, 72],
       [67, 31, 56, 43],
       [26, 58, 35, 14],
       [97, 76, 84, 52]])

In [119]: b
Out[119]: array([array([30, 41, 76, 13, 69])], dtype=object)

In [120]: b.shape
Out[120]: (1,)

In [121]: np.concatenate((a,np.concatenate(b)[:,None]),axis=1)
Out[121]: 
array([[54, 30, 55, 12, 30],
       [64, 94, 50, 72, 41],
       [67, 31, 56, 43, 76],
       [26, 58, 35, 14, 13],
       [97, 76, 84, 52, 69]])

答案 1 :(得分:3)

还有np.c_

>>> a = np.arange(20).reshape(5, 4)
>>> b = np.arange(-1, -6, -1)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])                                                                                                                                   
>>> b                                                                                                                                                       
array([-1, -2, -3, -4, -5])                                                                                                                                 
>>> np.c_[a, b]
array([[ 0,  1,  2,  3, -1],          
       [ 4,  5,  6,  7, -2],                       
       [ 8,  9, 10, 11, -3],                      
       [12, 13, 14, 15, -4],                                
       [16, 17, 18, 19, -5]])

答案 2 :(得分:2)

你可以这样做。

import numpy as np

x = np.random.randint(100, size=(5, 4))
y = [16, 15, 12, 12, 17]

print(x)

val = np.concatenate((x,np.reshape(y,(x.shape[0],1))),axis=1)
print(val)

输出:

[[32 37 35 53]
 [64 23 95 76]
 [17 76 11 30]
 [35 42  6 80]
 [61 88  7 56]]

[[32 37 35 53 16]
 [64 23 95 76 15]
 [17 76 11 30 12]
 [35 42  6 80 12]
 [61 88  7 56 17]]