移动窗口栅格洪水填充R

时间:2017-02-01 17:00:31

标签: raster fill image-segmentation r-raster connected-components

假设我有一个带有整数值的栅格,用于描述事件的时间作为一年中的某一天(DOY)。如果相应年份没有事件,则将单元格设置为NA。 R' raster'的clump()功能package将允许检测相同整数值的相邻单元格,并使用唯一ID标记它们。现在,想象这样的事件(例如火灾)可以随着时间的推移在空间中传播,以便在DOY 1和相邻的细胞(例如(x + 1,y),(x,y + 1)上燃烧细胞(x,y) ,...)然后在DOY 2上烧毁。因此,我想识别这样的事件,其中相邻像素在最多2天的DOY差异内燃烧(例如DOY(x,y)= 13和DOY(x) + 1,y)= 15)并使用唯一ID分配这些:

library(raster)
m<-matrix(c(1,10,11,14,
            2,2,13,NA,
            20,3,25,NA,
            21,25,7,NA), ncol=4, byrow = TRUE)
r<-raster(m) # raster object of matrix

应该产生栅格:

res_m<-matrix(c(1,2,2,2,
                1,1,2,NA,
                3,1,4,NA,
                3,4,5, NA), ncol=4, byrow = TRUE)
res_r<-raster(res_m)

或图形化:

par(mfrow=c(1,2))
plot(r, xlim=(c(0:1)), main="DOY")
text(r)
plot(res_r, xlim=(c(0:1)), main="classified result")
text(res_r)

timeIntervalSinceNow

编辑: 参考Lorenzo的评论:事件,其中传播是例如应将DOY1,DOY2和DOY4视为一个事件。但是,我无法弄清楚算法是如何形成的,其中两个不同的事件&#34;融化&#34;当它们传播时,但仍将被归类为两个不同的事件。 到目前为止,我解决的问题相当低效,如下所示:

#Round 1: find connected components

#cell indices
coli<-rep(1:ncol(r), nrow(r)) 
rowi<-rep(1:ncol(r), each= nrow(r)) 

#neighbourhood matrix (considering only NW, N, NE and W neighbours)
mat_nb <- matrix(c(1,1,1,
                   1,0,NA,
                   NA,NA,NA), nrow=3, ncol=3, byrow = T)

#create ascending class raster
cls<-1:ncell(r)
mcl<-setValues(r, cls)

#create empty raster to fill
ecl<-setValues(r, NA)

#loop through cells
for (j in 1:length(coli)){

  #####get adjacent cells 
  zelle<-cellFromRowCol(r, rowi[j], coli[j])
  nb <- adjacent(r, zelle, directions=mat_nb, pairs=F, sorted=T)

  if(is.na(r[zelle])) {next} # if cell=NA go to next cells
  if(length(nb) == 0) {ecl[zelle] <- mcl[zelle]} # if no neighbours, use ascending class value
  if(length(nb) > 0) {
    if(all(!is.na(r[nb[]]) & r[nb[]] %in% (r[zelle]-2):(r[zelle]+2) & !(unique(ecl[nb[]])))) 
      {ecl[zelle] <- ecl[nb[1]]}  # if all neighbours valid and from same class, assign to class
    if(!is.na(r[nb[1]]) & r[nb[1]] %in% (r[zelle]-2):(r[zelle]+2) & is.na(ecl[zelle])) 
      {ecl[zelle] <- ecl[nb[1]]} # if NW neighbour valid and zelle still unclassified, assign neighbour's class
    if(!is.na(r[nb[2]]) & r[nb[2]] %in% (r[zelle]-2):(r[zelle]+2) & is.na(ecl[zelle])) 
      {ecl[zelle] <- ecl[nb[2]]}  # same for N
    if(!is.na(r[nb[3]]) & r[nb[3]] %in% (r[zelle]-2):(r[zelle]+2) & is.na(ecl[zelle])) 
      {ecl[zelle] <- ecl[nb[3]]}  # same for NE
    if(!is.na(r[nb[4]]) & r[nb[4]] %in% (r[zelle]-2):(r[zelle]+2) & is.na(ecl[zelle])) 
      {ecl[zelle] <- ecl[nb[4]]} # same for W
    if(all(!(r[nb[]] %in% (r[zelle]-2):(r[zelle]+2)))) {ecl[zelle] <- mcl[zelle]} # if all neighbours "invalid", assign scending class value
  }
} # warnings: from pixels with less than 4 nbs

#compare result with initial raster
par(mfrow=c(1,2))
plot(r)
text(r)
plot(ecl)
text(ecl)

在第2轮中,组合了连接的组件类。

##Round 2: combine classes

ecla<-ecl #save from first recursion

# only E, SW, S and SE neighbours
mat_agg<-matrix(c(NA,NA,NA,
                  NA,0,1,
                  1,1,1), nrow=3, ncol=3, byrow = T)

for (i in 1:length(coli)){

  #####get adjacent cells 
  zelle<-cellFromRowCol(r, rowi[i], coli[i])
  nb <- adjacent(r, zelle, directions=mat_agg, pairs=F, sorted=T)

  if(is.na(r[zelle])) {next}
  if(length(nb) == 0) {ecl[zelle] <- mcl[zelle]}
  if(length(nb) > 0) {
    if(r[nb[2]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] < ecla[nb[2]]) {ecla[nb[2]] <- ecla[zelle]}
    if(r[nb[2]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] > ecla[nb[2]]) {ecla[zelle] <- ecla[nb[2]]}
    if(r[nb[3]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] < ecla[nb[3]]) {ecla[nb[3]] <- ecla[zelle]}
    if(r[nb[3]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] > ecla[nb[3]]) {ecla[zelle] <- ecla[nb[3]]}
    if(r[nb[4]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] < ecla[nb[4]]) {ecla[nb[4]] <- ecla[zelle]}
    if(r[nb[4]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] > ecla[nb[4]]) {ecla[zelle] <- ecla[nb[4]]}
    if(r[nb[1]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] < ecla[nb[1]]) {ecla[nb[1]] <- ecla[zelle]}
    if(r[nb[1]] %in% (r[zelle]-2):(r[zelle]+2) & ecla[zelle] > ecla[nb[1]]) {ecla[zelle] <- ecla[nb[1]]}
  } # warnings: from pixels with less than 4 nbs
}

# plot results
par(mfrow=c(1,3))
plot(ecl) # round 1 result
text(ecl)
plot(r)
text(r)
plot(ecla) # round 2 result
text(ecla)

1 个答案:

答案 0 :(得分:1)

这是一个棘手的老问题。我放弃了将复杂的函数传递给raster :: focal,所以我用data.table处理并使用了一系列规则。可能有更简单的方法,但无论如何。

这适用于您的数据和我生成的6x6栅格。请测试一下,看看它是怎么回事;

# packages
library(raster)
library(data.table)

# your example data
m<-matrix(c(1,10,11,14,
            2,2,13,NA,
            20,3,25,NA,
            21,25,7,NA), ncol=4, byrow = TRUE)
r<-raster(m)

# convert raster to data.table, add cell number attribute, and zonal ID column 
# and columns for the queen's case relationships (these columns contain the cell ID 
# that holds that relationship)
df <- as.data.table(as.data.frame(r))
df[,CELL:=as.numeric(row.names(df))]
df[,ID:=0]
df[,c("TL","T","TR","R","BR","B","BL","L") := 
   list(CELL-(ncol(r)+1),CELL-ncol(r),CELL-(ncol(r)-1),
   CELL+1,CELL+(ncol(r)+1),CELL+ncol(r),CELL+(ncol(r)-1),CELL-1)]

# set appropriate queen's case relations to NA for all edge cells
df[c(CELL %in% seq(1,ncell(r),ncol(r))), c("TL","L","BL")] <- NA
df[c(CELL %in% seq(ncol(r),ncell(r),ncol(r))), c("TR","R","BR")] <- NA
df[c(CELL %in% 1:ncol(r)), c("TL","T","TR")] <- NA
df[c(CELL %in% (ncell(r)-nrow(r)+1):ncell(r)), c("BL","B","BR")] <- NA

# melt data table, add the cell values that correspond to each relationship,
# remove rows that wont be needed just now
dfm <- melt(df,id.vars=c("layer","CELL","ID"))
dfm[,NEIGH.VAL := r[dfm[,value]]]
dfm[,WITHIN2:=ifelse(abs(layer-NEIGH.VAL)>2,F,T)]
dfm <- dfm[!is.na(value)&!is.na(layer)&!is.na(NEIGH.VAL)][order(CELL)]
dfm <- dfm[WITHIN2==TRUE]
dfm[,NEIGH.ID := 0]

# this is a tricky loop and any errors that may occur are more than likely produced here.
# It starts at the lowest cell ID with a value and builds a lookup up vector of cell IDs
# that conform to the DOY being within 2 days, then sets the ID for them all.
# It then moves on to the next cell ID available that has not had a zone ID assigned
# and does the same thing, with a zonal ID one higher. etc.
for(n in unique(dfm[,CELL])){
   while(nrow(dfm[CELL==n & NEIGH.ID==0]) > 0){
    lookups <- unique(dfm[CELL==n,value])
    while(all(unique(dfm[CELL %in% lookups,value]) == lookups)==F){
      lookups <- unique(c(lookups,dfm[CELL %in% lookups,value]))
      lookups <- unique(dfm[CELL %in% lookups,value])}
   dfm[CELL %in% lookups, NEIGH.ID := max(dfm[,NEIGH.ID])+1]
   }
}

# this section creates a raster of 1:ncell of the original data and assigns a zonal ID
# with reclassify. Everything that did not get a zonal ID (single 'island' cells
# and original NA cells) becomes NA
results <- unique(dfm[,list(CELL,NEIGH.ID)])
rzone <- r
rzone[] <- 1:ncell(rzone)
rc <- reclassify(rzone, results)
rc[!(rzone %in% results[[1]])] <- NA

# Now we need to determine those single 'island' cells and reinstate them, with their
# own ID, increasing incrementally from the highest extant ID based on the above analysis
final.vec <- which(!(rzone[] %in% results[[1]]) & !(rzone[] %in% which(is.na(values(r)))))

rc[final.vec] <- seq((cellStats(rc,max)+1),(cellStats(rc,max)+length(rc[final.vec])),1)

# plot to check
par(mfrow=c(1,3))
plot(r, xlim=(c(0:1)), main="DOY")
text(r)
plot(res_r, xlim=(c(0:1)), main="DOY")
text(res_r)
plot(rc, xlim=(c(0:1)), main="zones result")
text(rc)

这个代码也在下面工作,虽然有一个游戏,手指交叉! (忽略警告);

m<-matrix(c(1,3,5,14,NA,21,
            2,2,17,NA,23,25,
            9,15,4,5,9,NA,
            14,11,14,21,25,7,
            NA,NA,16,2,4,6,
            NA,17,25,15,1,NA), ncol=6, byrow = TRUE)
r<-raster(m) # raster object of matrix