为什么最大和子阵列暴力O(n ^ 2)?

时间:2017-01-27 23:37:39

标签: arrays algorithm computer-science

maximum subarray sum是计算机科学中的着名问题。

至少有两种解决方案:

  1. 蛮力,找到所有可能的子阵列并找到最大值。
  2. 使用Karanes Algorithm的变体来计算通过数组第一次传递时的全局最大值。
  3. 在视频tutorial中,作者提到蛮力方法为O(n^2),阅读another answer一个人认为O(n^2)而另一个人认为它是O(n^3) < / p>

    蛮力O(n^2)还是O(n^3)?更重要的是,你可以说明你对蛮力方法进行的分析,以了解它是O(?)吗?

3 个答案:

答案 0 :(得分:19)

嗯,这取决于力量的粗暴程度。

如果我们生成所有(i, j): i <= j对并计算其间的总和,则为O(n^3)

....
for (int i = 0; i < n; i++)
    for (int j = i; j < n; j++) {
        int sum = 0;
        for (int k = i; k <= j; k++)
            sum += a[k];
        if (sum > max)
            max = sum;
    }

如果我们从所有位置开始并计算运行总和,则为O(n^2)

....
for(int i = 0; i < n; i++) {
    int sum = 0;
    for (int j = i; j < n; j++) {
        sum += a[j];
        if (sum > max)
            max = sum;
    }
}

答案 1 :(得分:3)

以下是最大子阵列和问题的三种解决方案。 solve1()在O(N)时间运行,solve2()在O(N ^ 2)中运行,solve3()在O(N ^ 3)中运行。请注意,solve1()称为Kadane的算法。

O(N ^ 2)和O(N ^ 3)函数之间的区别在于,在O(N ^ 2)函数中,每次end索引递增时,隐式计算和,而在O(N ^ 3)函数中,总和是使用startend之间的第三个显式循环计算的。

我还在所有三种方法中添加了代码来处理所有输入值为负的情况。

public class MaximumSubarraySum {

    /**
     * Solves the maximum subarray sum in O(N) time.
     */
    public static int solve1(int[] input) {

        int sum = input[0];
        int bestSum = sum;

        for (int i = 1; i < input.length; i++) {
            sum = Math.max(input[i], input[i] + sum);
            bestSum = Math.max(sum, bestSum);
        }

        return bestSum;
    }

    /**
     * Solves the maximum subarray sum in O(N^2) time. The two indices
     * 'start' and 'end' iterate over all possible N^2 index pairs, with 
     * the sum of input[start, end] always computed for every 'end' value. 
     */
    public static int solve2(int[] input) {

        int bestSum = -Integer.MAX_VALUE;

        for (int start = 0; start < input.length; start++) {

            // Compute the sum of input[start, end] and update
            // 'bestSum' if we found a new max subarray sum.

            // Set the sum to initial input value to handle edge case
            // of all the values being negative.
            int sum = input[start];
            bestSum = Math.max(sum, bestSum);

            for (int end = start+1; end < input.length; end++) {
                sum += input[end];
                bestSum = Math.max(sum, bestSum);
            }
        }

        return bestSum;
    }

    /**
     * Solves the maximum subarray sum in O(N^3) time. The two indices
     * 'start' and 'end' iterate over all possible N^2 index pairs, and
     * a third loop with index 'mid' iterates between them to compute 
     * the sum of input[start, end].
     */
    public static int solve3(int[] input) {

        int bestSum = -Integer.MAX_VALUE;

        for (int start = 0; start < input.length; start++) {

            for (int end = start; end < input.length; end++) {

                // Compute the sum of input[start, end] using a third loop
                // with index 'mid'. Update 'bestSum' if we found a new 
                // max subarray sum.

                // Set the sum to initial input value to handle edge case
                // of all the values being negative.
                int sum = input[start];
                bestSum = Math.max(sum, bestSum);

                for (int mid = start+1; mid < end; mid++) {
                    sum = Math.max(input[mid], input[mid] + sum);
                    bestSum = Math.max(sum, bestSum);
                }
            }
        }

        return bestSum;
    }


    public static void runTest(int[] input) {

        System.out.printf("\n");
        System.out.printf("Input: ");
        for (int i = 0; i < input.length; i++) {
            System.out.printf("%2d", input[i]);
            if (i < input.length-1) {
                System.out.printf(", ");
            }
        }
        System.out.printf("\n");

        int result = 0;

        result = MaximumSubarraySum.solve1(input);
        System.out.printf("solve1 result = %d\n", result);

        result = MaximumSubarraySum.solve2(input);
        System.out.printf("solve2 result = %d\n", result);

        result = MaximumSubarraySum.solve3(input);
        System.out.printf("solve3 result = %d\n", result);

    }


    public static void main(String argv[]) {

        int[] test1 = { -2, -3,  4, -1, -2, -1, -5, -3 };
        runTest(test1);

        int[] test2 = { -2, -3, -4, -1, -2, -1, -5,  3 };
        runTest(test2);

        int[] test3 = { -2, -3, -4, -1, -2, -1, -5, -3 };
        runTest(test3);

        int[] test4 = { -2, -3,  4, -1, -2,  1,  5, -3 };
        runTest(test4);  
    }
}

输出结果为:

Input: -2, -3,  4, -1, -2, -1, -5, -3
solve1 result = 4
solve2 result = 4
solve3 result = 4

Input: -2, -3, -4, -1, -2, -1, -5,  3
solve1 result = 3
solve2 result = 3
solve3 result = 3

Input: -2, -3, -4, -1, -2, -1, -5, -3
solve1 result = -1
solve2 result = -1
solve3 result = -1

Input: -2, -3,  4, -1, -2,  1,  5, -3
solve1 result = 7
solve2 result = 7
solve3 result = 7

答案 2 :(得分:-4)

这可以用O(N)完成,如下! 我错过了什么吗?

    int[] arr = {}; //elements;
    int max = 0, temp = 0;
    for (int i = 0; i < arr.length; i++) {
        temp = Math.max(arr[i], arr[i] + temp);
        max = Math.max(temp, max);
    }
    System.out.println(max); //result