我喜欢使用scikit的LOGO(保留一组)作为交叉验证方法,并结合学习曲线。这在我处理的大多数情况下都非常好用,但我只能(有效地)使用两个参数(我相信)在这些情况下最重要的(来自经验):最大特征和估计量的数量。我的代码示例如下:
Fscorer = make_scorer(f1_score, average = 'micro')
gp = training_data["GP"].values
logo = LeaveOneGroupOut()
from sklearn.ensemble import RandomForestClassifier
RF_clf100 = RandomForestClassifier (n_estimators=100, n_jobs=-1, random_state = 49)
RF_clf200 = RandomForestClassifier (n_estimators=200, n_jobs=-1, random_state = 49)
RF_clf300 = RandomForestClassifier (n_estimators=300, n_jobs=-1, random_state = 49)
RF_clf400 = RandomForestClassifier (n_estimators=400, n_jobs=-1, random_state = 49)
RF_clf500 = RandomForestClassifier (n_estimators=500, n_jobs=-1, random_state = 49)
RF_clf600 = RandomForestClassifier (n_estimators=600, n_jobs=-1, random_state = 49)
param_name = "max_features"
param_range = param_range = [5, 10, 15, 20, 25, 30]
plt.figure()
plt.suptitle('n_estimators = 100', fontsize=14, fontweight='bold')
_, test_scores = validation_curve(RF_clf100, X, y, cv=logo.split(X, y, groups=gp),
param_name=param_name, param_range=param_range,
scoring=Fscorer, n_jobs=-1)
test_scores_mean = np.mean(test_scores, axis=1)
plt.plot(param_range, test_scores_mean)
plt.xlabel(param_name)
plt.xlim(min(param_range), max(param_range))
plt.ylabel("F1")
plt.ylim(0.47, 0.57)
plt.legend(loc="best")
plt.show()
plt.figure()
plt.suptitle('n_estimators = 200', fontsize=14, fontweight='bold')
_, test_scores = validation_curve(RF_clf200, X, y, cv=logo.split(X, y, groups=gp),
param_name=param_name, param_range=param_range,
scoring=Fscorer, n_jobs=-1)
test_scores_mean = np.mean(test_scores, axis=1)
plt.plot(param_range, test_scores_mean)
plt.xlabel(param_name)
plt.xlim(min(param_range), max(param_range))
plt.ylabel("F1")
plt.ylim(0.47, 0.57)
plt.legend(loc="best")
plt.show()
...
...
我真正想要的是将LOGO与网格搜索或随机搜索相结合,以进行更全面的参数空间搜索。
截至目前,我的代码如下:
param_dist = {"n_estimators": [100, 200, 300, 400, 500, 600],
"max_features": sp_randint(5, 30),
"max_depth": sp_randint(2, 18),
"criterion": ['entropy', 'gini'],
"min_samples_leaf": sp_randint(2, 17)}
clf = RandomForestClassifier(random_state = 49)
n_iter_search = 45
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=n_iter_search,
scoring=Fscorer, cv=8,
n_jobs=-1)
random_search.fit(X, y)
当我用cv = 8
替换cv=logo.split(X, y, groups=gp)
时,收到以下错误消息:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-10-0092e11ffbf4> in <module>()
---> 35 random_search.fit(X, y)
/Applications/anaconda/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in fit(self, X, y, groups)
1183 self.n_iter,
1184 random_state=self.random_state)
-> 1185 return self._fit(X, y, groups, sampled_params)
/Applications/anaconda/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in _fit(self, X, y, groups, parameter_iterable)
540
541 X, y, groups = indexable(X, y, groups)
--> 542 n_splits = cv.get_n_splits(X, y, groups)
543 if self.verbose > 0 and isinstance(parameter_iterable, Sized):
544 n_candidates = len(parameter_iterable)
/Applications/anaconda/lib/python2.7/site-packages/sklearn/model_selection/_split.pyc in get_n_splits(self, X, y, groups)
1489 Returns the number of splitting iterations in the cross-validator.
1490 """
-> 1491 return len(self.cv) # Both iterables and old-cv objects support len
1492
1493 def split(self, X=None, y=None, groups=None):
TypeError: object of type 'generator' has no len()
关于(1)发生了什么,以及更重要的是,(2)我如何使其工作(将RandomizedSearchCV与LeaveOneGroupOut相结合)的任何建议?
* 2017年2月8日更新*
使用cv=logo
与@Vivek Kumar&#39;建议random_search.fit(X, y, wells)
答案 0 :(得分:1)
您不应将logo.split()
传递给RandomizedSearchCV,只会将cv
对象logo
传递给它。 RandomizedSearchCV在内部调用split()
以生成列车测试索引。
您可以将gp
群组传递到fit()
对RandomizedSearchCV
或GridSearchCV
对象的来电。
而不是这样做:
random_search.fit(X, y)
这样做:
random_search.fit(X, y, gp)
编辑:您也可以将gp作为dict传递给参数fit_params
中的GridSearchCV或RandomizedSearchCV的构造函数。