我刚刚开始使用snakemake,并且想知道"正确的"是什么?在同一个文件上运行一组参数的方法以及它如何用于链接规则?
因此,例如,当我想要多个规范化方法时,接下来让我们说一个具有不同数量的k个聚类的聚类规则。 这样做的最佳方法是什么,以便运行所有组合?
我开始这样做了:
INFILES = ["mytable"]
rule preprocess:
input:
bam=expand("data/{sample}.csv", sample=INFILES, param=config["normmethod"])
output:
bamo=expand("results/{sample}_pp_{param}.csv", sample=INFILES, param=config["normmethod"])
script:
"scripts/preprocess.py"
然后通过以下方式调用脚本:
snakemake --config normmethod =中位数
但是,在工作流程的后期,这并没有真正扩展到更多选项。例如,我如何自动合并这些选项?
normmethods= ["Median", "Quantile"]
kclusters= [1,3,5,7,10]
答案 0 :(得分:5)
好像你没有将params传递给你的脚本。如下所示呢?
import re
import os
import glob
normmethods= ["Median", "Quantile"] # can be set from config['normmethods']
kclusters= [1,3,5,7,10] # can be set from config['kclusters']
INFILES = ['results/' + re.sub('\.csv$', '_pp_' + m + '-' + str(k) + '.csv', re.sub('data/', '', file)) for file in glob.glob("data/*.csv") for m in normmethods for k in kclusters]
rule cluster:
input: INFILES
rule preprocess:
input:
bam="data/{sample}.csv"
output:
bamo="results/{sample}_pp_{m}-{k}.csv"
run:
os.system("scripts/preprocess.py %s %s %s %s" % (input.bame, output.bamo, wildcards.m, wildcards.k))
答案 1 :(得分:5)
您在规则中使用expand()函数做得很好。
对于参数,我建议使用包含所有参数的配置文件。 Snakemake与YAML& JSON文件。在这里,您可以获得有关这两种格式的所有信息:
在你的情况下,你只需要在YAML文件中写这个:
INFILES : "mytables"
normmethods : ["Median", "Quantile"]
or
normmethods : - "Median"
- "Quantile"
kclusters : [1,3,5,7,10]
or
kclusters : - 1
- 3
- 5
- 7
- 10
像这样写下你的规则:
rule preprocess:
input:
bam = expand("data/{sample}.csv",
sample = config["INFILES"])
params :
kcluster = config["kcluster"]
output:
bamo = expand("results/{sample}_pp_{method}_{cluster}.csv",
sample = config["INFILES"],
method = config["normmethod"],
cluster = config["kcluster"])
script:
"scripts/preprocess.py {input.bam} {params.kcluster}"
那你只需要像这样吃午饭:
snakemake --configfile path/to/config.yml
要与其他参数一起运行,您必须修改配置文件,而不是修改snakefile(减少错误),并且更好的是可读性和代码美。
编辑:
rule preprocess:
input:
bam = "data/{sample}.csv"
只是为了纠正我自己的错误,你不需要在输入上使用expand,因为你只想将规则运行一个文件.csv一个。所以只需将通配符放在这里,Snakemake就会尽力而为。
答案 2 :(得分:1)
这个答案类似于@ Shiping的答案,即在规则的this.$route.query.reportId (or this.$route.params.reportId, I don't remember)
中使用通配符来为每个输入文件实现多个参数。但是,这个答案提供了一个更详细的示例,并避免使用复杂的列表理解,正则表达式或output
模块。
@Pereira Hugo的方法使用一个作业来为一个输入文件运行所有参数组合,而本回答中的方法使用一个作业为一个输入文件运行一个参数组合,这使得更容易并行化在一个输入文件上执行每个参数组合。
glob
:
Snakefile
运行import os
data_dir = 'data'
sample_fns = os.listdir(data_dir)
sample_pfxes = list(map(lambda p: p[:p.rfind('.')],
sample_fns))
res_dir = 'results'
params1 = [1, 2]
params2 = ['a', 'b', 'c']
rule all:
input:
expand(os.path.join(res_dir, '{sample}_p1_{param1}_p2_{param2}.csv'),
sample=sample_pfxes, param1=params1, param2=params2)
rule preprocess:
input:
csv=os.path.join(data_dir, '{sample}.csv')
output:
csv=os.path.join(res_dir, '{sample}_p1_{param1}_p2_{param2}.csv')
shell:
"ls {input.csv} && \
echo P1: {wildcards.param1}, P2: {wildcards.param2} > {output.csv}"
之前的目录结构:
snakemake
运行$ tree .
.
├── Snakefile
├── data
│ ├── sample_1.csv
│ ├── sample_2.csv
│ └── sample_3.csv
└── results
:
snakemake
运行$ snakemake -p
Building DAG of jobs...
Using shell: /bin/bash
Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:
count jobs
1 all
18 preprocess
19
rule preprocess:
input: data/sample_1.csv
output: results/sample_1_p1_2_p2_a.csv
jobid: 1
wildcards: param2=a, sample=sample_1, param1=2
ls data/sample_1.csv && echo P1: 2, P2: a > results/sample_1_p1_2_p2_a.csv
data/sample_1.csv
Finished job 1.
1 of 19 steps (5%) done
rule preprocess:
input: data/sample_2.csv
output: results/sample_2_p1_2_p2_a.csv
jobid: 2
wildcards: param2=a, sample=sample_2, param1=2
ls data/sample_2.csv && echo P1: 2, P2: a > results/sample_2_p1_2_p2_a.csv
data/sample_2.csv
Finished job 2.
2 of 19 steps (11%) done
...
localrule all:
input: results/sample_1_p1_1_p2_a.csv, results/sample_1_p1_2_p2_a.csv, results/sample_2_p1_1_p2_a.csv, results/sample_2_p1_2_p2_a.csv, results/sample_3_p1_1_p2_a.csv, results/sample_3_p1_2_p2_a.csv, results/sample_1_p1_1_p2_b.csv, results/sample_1_p1_2_p2_b.csv, results/sample_2_p1_1_p2_b.csv, results/sample_2_p1_2_p2_b.csv, results/sample_3_p1_1_p2_b.csv, results/sample_3_p1_2_p2_b.csv, results/sample_1_p1_1_p2_c.csv, results/sample_1_p1_2_p2_c.csv, results/sample_2_p1_1_p2_c.csv, results/sample_2_p1_2_p2_c.csv, results/sample_3_p1_1_p2_c.csv, results/sample_3_p1_2_p2_c.csv
jobid: 0
Finished job 0.
19 of 19 steps (100%) done
后的目录结构:
snakemake
示例结果:
$ tree . [18:51:12]
.
├── Snakefile
├── data
│ ├── sample_1.csv
│ ├── sample_2.csv
│ └── sample_3.csv
└── results
├── sample_1_p1_1_p2_a.csv
├── sample_1_p1_1_p2_b.csv
├── sample_1_p1_1_p2_c.csv
├── sample_1_p1_2_p2_a.csv
├── sample_1_p1_2_p2_b.csv
├── sample_1_p1_2_p2_c.csv
├── sample_2_p1_1_p2_a.csv
├── sample_2_p1_1_p2_b.csv
├── sample_2_p1_1_p2_c.csv
├── sample_2_p1_2_p2_a.csv
├── sample_2_p1_2_p2_b.csv
├── sample_2_p1_2_p2_c.csv
├── sample_3_p1_1_p2_a.csv
├── sample_3_p1_1_p2_b.csv
├── sample_3_p1_1_p2_c.csv
├── sample_3_p1_2_p2_a.csv
├── sample_3_p1_2_p2_b.csv
└── sample_3_p1_2_p2_c.csv