通过透视查找矩形对象质量

时间:2017-01-20 13:28:18

标签: c++ opencv rectangles perspective opencv-solvepnp

我从相机获取图像(校准且没有镜头失真),我需要检测一个矩形物体。标记就是一个很好的例子。对于标记,我检查角数,最小尺寸,板对比度和凸度。我知道如何在有大量假矩形的情况下改进这一点。 这是一个示例图像:

image

通常所有这些都是有效的,因为在不了解相机的情况下,我们无法确定透视是否允许这些形状。我知道现实生活中矩形的大小(或至少比例)。所以我有一个想法,我应该能够忽略许多这些形状,只需重新投影它们并检查错误。 就像我使用solvePnPRansac一样,如果形状不可能,它将无法收敛。如果它没有收敛我只是忽视它。遗憾的是,没有一个OpenCV求解函数允许检查我的错误或收敛。我实际上需要一些比例或质量,因为有些矩形可能重叠。例如,我的对象查找器识别这些矩形:

overlap image

其中三个实际上是正确的,或者至少是“最好的”。但我需要一些方法来了解它是哪一个。由于相机的视角,我不能使用像线长这样的东西。所以我只是认为我可以解决并查看哪个误差最小。

图像中没有镜头失真,但即使有解决方案,通常也允许将D传递给它。 这甚至可能还是我错过了什么? 我想我可以尝试一下黑客解决,只是为了回归收敛,但也许有一种更简单的方法?

1 个答案:

答案 0 :(得分:0)

我认为我可以做一些像使用网格校准时所做的事情。我可以计算重投影错误。所以首先我解决了获得转换矩阵的问题。然后我使用变换矩阵在3D中转换点,然后使用projectPoints将它们投影回2D。然后我检查原始2D点和投影2D点之间的距离。这可以用于质量。不可能的对象通常在我的图像中有100像素或更多的重投影错误,但可能的对象少于20像素。所以我只做了一个25像素的截止,看起来效果很好。

请注意,我可能会进行更多转换。在我的原始图像中,使用我当前的相机可能有两个不可能,但它仍然拒绝了许多假货。

如果没有其他人有想法,我会接受这个作为答案。

以下是我使用的方法的一些代码:

  //This is the object in 3D
  double width = 50.0; //Object is 50mm wide
  double height = 30.0; //Object is 30mm tall
  cv::Mat object_points(4,3,CV_64FC1);
  object_points.at<double>(0,0)=0;
  object_points.at<double>(0,1)=0;
  object_points.at<double>(0,2)=0;
  object_points.at<double>(1,0)=width;
  object_points.at<double>(1,1)=0;
  object_points.at<double>(1,2)=0;
  object_points.at<double>(2,0)=width;
  object_points.at<double>(2,1)=height;
  object_points.at<double>(2,2)=0;
  object_points.at<double>(3,0)=0;
  object_points.at<double>(3,1)=height;
  object_points.at<double>(3,2)=0;

  //Check all rectangles for error
  cv::Mat image_points(4,2,CV_64FC1);
  for (size_t i = 0; i < rectangles_to_test.size(); i++) {
    // Get rectangle points
    for (size_t c = 0; c < 4; ++c) {
      image_points.at<double>(c,0) = (rectangles_to_test[i].points[c].x);
      image_points.at<double>(c,1) = (rectangles_to_test[i].points[c].y);
    }

    // Calculate transformation matrix
    cv::Mat rvec, tvec;
    cv::solvePnP(object_points, image_points, M1, D1, rvec, tvec);

    cv::Mat rotation; 
    Matrix4<double> transform;
    transform.init_identity();
    cv::Rodrigues(rvec, rotation);

    for(size_t row = 0; row < 3; ++row) {
      for(size_t col = 0; col < 3; ++col) {
        transform.set(row, col, rotation.at<double>(row, col));
      }
      transform.set(row, 3, tvec.at<double>(row, 0));
    }

    // Calculate projection
    std::vector<cv::Point3f> p3(4);
    std::vector<cv::Point2f> p2;
    Vector4<double> p = transform * Vector4<double>(0, 0, 0, 1);
    p3[0] = cv::Point3f((float)p.x, (float)p.y, (float)p.z);
    p = transform * Vector4<double>(width, 0, 0, 1);
    p3[1] = cv::Point3f((float)p.x, (float)p.y, (float)p.z); 
    p = transform * Vector4<double>(width, height, 0, 1);
    p3[2] = cv::Point3f((float)p.x, (float)p.y, (float)p.z); 
    p = transform * Vector4<double>(0, height, 0, 1);
    p3[3] = cv::Point3f((float)p.x, (float)p.y, (float)p.z); 

    cv::projectPoints(p3, cv::Mat::zeros(1, 3, CV_64FC1), cv::Mat::zeros(1, 3, CV_64FC1), M1, D1, p2);

    // Calculate reprojection error
    rectangles_to_test[i].reprojection_error = 0.0;
    for (size_t c = 0; c < 4; ++c) {
      double dx = p2[c].x - rectangles_to_test[i].points[c].x;
      double dy = p2[c].y - rectangles_to_test[i].points[c].y;
      rectangles_to_test[i].reprojection_error += std::sqrt(dx*dx + dy*dy);
    }
    if (rectangles_to_test[i].reprojection_error > reprojection_error_threshold) {
      //rectangle is no good
    }
  }