在User Guide.html中,tensorRT的输入/输出需要使用NCHW格式
什么是NCHW fomat?
如何将cv :: MAT转换为NCHW格式?
我使用TensorRT进行推理,如下面的代码 没什么错误。但是,这不是输出的结果。
int batchSize = 1;
int size_of_single_input = 256 * 256 * 3 * sizeof(float);
int size_of_single_output = 100 * 1 * 1 * sizeof(float);
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();
CaffeParser parser;
auto blob_name_to_tensor = parser.parse(“deploy.prototxt”,
"sample.caffemodel",
*network,
DataType::kFLOAT);
network->markOutput(*blob_name_to_tensor->find("prob"));
builder->setMaxBatchSize(1);
builder->setMaxWorkspaceSize(1 << 30);
ICudaEngine* engine = builder->buildCudaEngine(*network);
IExecutionContext *context = engine->createExecutionContext();
int inputIndex = engine->getBindingIndex(INPUT_LAYER_NAME),
int outputIndex = engine->getBindingIndex(OUTPUT_LAYER_NAME);
cv::Mat input;
input = imread("./sample.jpg");
cvtColor(input, input, CV_BGR2RGB);
cv::resize(input, input, cv::Size(256, 256));
float output[OUTPUTSIZE];
void* buffers = malloc(engine->getNbBindings() * sizeof(void*));
cudaMalloc(&buffers[inputIndex], batchSize * size_of_single_input);
cudaMalloc(&buffers[outputIndex], batchSize * size_of_single_output);
cudaStream_t stream;
cudaStreamCreate(&stream);
cudaMemcpyAsync(buffers[inputIndex], (float *)input,
batchSize * size_of_single_input,
cudaMemcpyHostToDevice, stream);
context.enqueue(batchSize, buffers, stream, nullptr);
cudaMemcpyAsync(output, buffers[outputIndex],
batchSize * size_of_single_output,
cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
答案 0 :(得分:0)
NCHW:对于3通道图像,比如BGR,首先存储B通道的像素,然后存储G通道,最后存储R通道。
NHWC:对于每个像素,它的3种颜色以BGR顺序存储在一起。
TensorRT要求您的图像数据为NCHW顺序。但OpenCV以NHWC顺序读取它。您可以编写一个简单的函数来将数据从NHWC读取到缓冲区,然后以NCHW顺序存储它们。将此缓冲区复制到设备内存并传递给TensorRT。
您可以在TensorRT安装的samples/sampleFasterRCNN/sampleFasterRCNN.cpp
文件中找到此操作的示例。它读取PPM文件,该文件也是NHWC顺序,然后将其转换为NCHW顺序,并在一个步骤中减去平均值。您可以根据自己的目的进行修改。
答案 1 :(得分:0)
此代码段按照Ashwin的说明进行了转换
bool SampleUffSSD::processInput(const samplesCommon::BufferManager& buffers)
const int batchSize = mParams.batchSize;
// Available images
std::vector<std::string> imageList = {"test.jpeg"};
mPPMs.resize(batchSize);
assert(mPPMs.size() <= imageList.size());
for (int i = 0; i < batchSize; ++i)
{
readImage(locateFile(imageList[i], mParams.dataDirs), image);
}
float* hostDataBuffer = static_cast<float*>(buffers.getHostBuffer(mParams.inputTensorNames[0]));
// Host memory for input buffer
for (int i = 0, volImg = inputH * inputW; i < mParams.batchSize; ++i)
{
for (unsigned j = 0, volChl = inputH * inputW; j < inputH; ++j)
{
for( unsigned k = 0; k < inputW; ++ k)
{
cv::Vec3b bgr = image.at<cv::Vec3b>(j,k);
hostDataBuffer[i * volImg + 0 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[2]) - 1.0;
hostDataBuffer[i * volImg + 1 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[1]) - 1.0;
hostDataBuffer[i * volImg + 2 * volChl + j * inputW + k] = (2.0 / 255.0) * float(bgr[0]) - 1.0;
}
}
}
答案 2 :(得分:-1)
// suppose all data types are int.
// size of mat is 256*256*3.
cv::Mat NCHW,NHWC;
std::vector<cv::Mat> channels;
split(NHWC, channels);
memcpy(NCHW.data,channels[0].data,256*256*sizeof(int));
memcpy(NCHW.data+256*256,channels[1].data,256*256*sizeof(int));
memcpy(NCHW.data+2*256*256,channels[2].data,256*256*sizeof(int));