我正在研究如何找到2D形状的惯性。该形状的轮廓与几个点网格化,每个点的x和y坐标已知。
我知道Ixx
,Iyy
和Ixy
的表达,但身体没有质量。我该怎么办?
答案 0 :(得分:1)
对于您拥有的任何形状,您需要将其拆分为三角形并分别处理每个三角形。然后最后使用以下规则组合结果
<强>总体强>
% Combined total area of all triangles
total_area = SUM( area(i), i=1:n )
total_mass = SUM( mass(i), i=1:n )
% Combined centroid (center of mass) coordinates
combined_centroid_x = SUM( mass(i)*centroid_x(i), i=1:n)/total_mass
combined_centroid_y = SUM( mass(i)*centroid_y(i), i=1:n)/total_mass
% Each distance to triangle (squared)
centroid_distance_sq(i) = centroid_x(i)*centroid_x(i)+centroid_y(i)*centroid_y(i)
% Combined mass moment of inertia
combined_mmoi = SUM(mmoi(i)+mass(i)*centroid_distance_sq(i), i=1:n)
现在为每个三角形。
考虑带矢量坐标的三个角顶点,点 A , B 和 C
a=[ax,ay]
b=[bx,by]
c=[cx,cy]
以及以下点和交叉积(标量)组合
a·a = ax*ax+ay*ay
b·b = bx*bx+by*by
c·c = cx*cx+cy*cy
a·b = ax*bx+ay*by
b·c = bx*cx+by*cy
c·a = cx*ax+cy*ay
a×b = ax*by-ay*bx
b×c = bx*cy-by*cx
c×a = cx*ay-cy*ax
三角形的属性是(t(i)
厚度和rho
质量密度)
area(i) = 1/2*ABS( a×b + b×c + c×a )
mass(i) = rho*t(i)*area(i)
centroid_x(i) = 1/3*(ax + bx + cx)
centroid_y(i) = 1/3*(ay + by + cy)
mmoi(i) = 1/6*mass(i)*( a·a + b·b + c·c + a·b + b·c + c·a )
按组件分类
area(i) = 1/2*ABS( ax*(by-cy)+ay*(cx-bx)+bx*cy-by*cx)
mmoi(i) = mass(i)/6*(ax^2+ax*(bx+cx)+bx^2+bx*cx+cx^2+ay^2+ay*(by+cy)+by^2+by*cy+cy^2)
<强>附录强>
这里有一点理论。使用
找到每个三角形的面积Area = 1/2 * || (b-a) × (c-b) ||
其中×
是向量叉积,|| .. ||
是向量范数(长度函数)。
三角形由两个变量t
和s
参数化,使得双积分A = INT(INT(1,dx),dy)
给出总面积
% position r(s,t) = [x,y]
[x,y] = [ax,ay] + t*[bx-ax, by-zy] + t*s*[cx-bx,cy-by]
% gradient directions along s and t
(dr/dt) = [bx-ax,by-ay] + s*[cx-bx,cy-by]
(dr/ds) = t*[cx-bx,cy-by]
% Integration area element
dA = || (dr/ds)×(dr/dt) || = (2*A*t)*ds*dt
%
% where A = 1/2*||(b-a)×(c-b)||
% Check that the integral returns the area
Area = INT( INT( 2*A*t,s=0..1), t=0..1) = 2*A*(1/2) = A
% Mass moment of inertia components
/ / / | y^2+z^2 -x*y -x*z |
I = 2*m*| | | t*| -x*y x^2+z^2 -y*z | dz ds dt
/ / / | -x*z -y*z x^2+y^2 |
% where [x,y] are defined from the parametrization