为什么我的Sobel边缘检测代码不起作用?

时间:2016-12-31 05:10:22

标签: python image-processing convolution

以下是使用Sobel operator

进行边缘检测的代码
from PIL import Image
import numpy as np
from scipy import misc

a = np.array([1, 2, 1])
b = np.array([1, 0, -1])
Gy = np.outer(a, b)
Gx = np.rot90(Gy, k=3)

def apply(X):
    a = (X * Gx)
    b = (X * Gy)
    return np.abs(a.sum()) + np.abs(b.sum())

data = np.uint8(misc.lena())
data2 = np.copy(data)
center = offset = 1
for i in range(offset, data.shape[0]-offset):
    for j in range(offset, data.shape[1]-offset):
        X = data[i-offset:i+offset+1, j-offset:j+offset+1]
        data[i, j] = apply(X)

image = Image.fromarray(data)
image.show()
image = Image.fromarray(data2)
image.show()

结果是:

enter image description here

而不是:

enter image description here

对于它的价值,我相当肯定我的for循环和图像内核的一般概念是正确的。例如,我能够生成这个自定义过滤器(高斯减去中心):

enter image description here

我的Sobel滤镜有什么问题?

1 个答案:

答案 0 :(得分:0)

终于明白了。我不应该修改数组,因为它显然会更改在过滤器的后续应用程序中计算的值。这有效:

...
new_data = np.zeros(data.shape)
center = offset = 1
for i in range(offset, new_data.shape[0]-offset):
    for j in range(offset, new_data.shape[1]-offset):
        X = data[i-offset:i+offset+1, j-offset:j+offset+1]
        new_data[i, j] = apply(X)
...

产生:

enter image description here