我有传感器数据的数据框
我的数据框如下:
pressure datetime
4.848374 2016-04-12 10:04:00
4.683901 2016-04-12 10:04:32
5.237860 2016-04-12 10:13:20
现在,我想应用ARIMA
进行预测分析。
由于数据未统一采样,我在每小时基础上对其进行汇总,如下所示:
datetime pressure
"2016-04-19 00:00:00 BST" 5.581806
"2016-04-19 01:00:00 BST" 4.769832
"2016-04-19 02:00:00 BST" 4.769832
"2016-04-19 03:00:00 BST" 4.553711
"2016-04-19 04:00:00 BST" 6.285599
"2016-04-19 05:00:00 BST" 5.873414
每小时的压力如下所示:
但我无法创建ts
对象,因为我不确定每小时数据的频率应该是多少。
答案 0 :(得分:2)
您的问题已在评论部分得到解答,但重申一下,您应将频率设置为24,因为您要预测每小时数据:
sensor = ts(hourlyPressure, frequency = 24)
关于修复绘图中日期的下一点,让我们从一些示例数据开始:
###Sequence of numbers to forecast
hourlyPressure<-c(1:24, 12:36, 24:48, 36:60)
###Sequence of Accompanying Dates
dates<-seq(as.POSIXct("2016-04-19 00:00:00"), as.POSIXct("2016-04-23 02:00:00"), by="hour")
现在我们可以将hourlyPressure数据设置为ts()对象(让我们忽略一分钟的日期)
sensor <- ts(hourlyPressure, frequency=24)
现在适合你的arima模型,在这个例子中我将使用预测包中的auto.arima函数,因为找到最好的arima模型不是这里关注的焦点(尽管使用auto.arima()是一种非常强大的方式找到最适合你的数据的arima模型):
###fit arima model to sensor data
sensor_arima_fit<- auto.arima(sensor)
然后,只需在plot()函数
中指定x值,即可使用适当的日期绘制此数据plot(y=sensor_arima_fit$x, x=dates)
当我们预测我们的数据并希望绘制原始数据,预测并确定日期时,更难一点。
###now forecast ahead (lets say 2 days) using the arima model that was fit above
forecast_sensor <- forecast(sensor_arima_fit, h = 48)
现在绘制原始数据,使用正确的日期进行预测,我们可以执行以下操作:
###set h to be the same as above
h <- c(48)
###calculate the dates for the forecasted values
forecasted_dates<-seq(dates[length(dates)]+(60*60)*(1),
dates[length(dates)]+(60*60)*(h), by="hour")
###now plot the data
plot(y=c(forecast_sensor$x, forecast_sensor$mean),
x=seq(as.POSIXct("2016-04-19 00:00:00"),as.POSIXct(forecasted_dates[length(forecasted_dates)]), by="hour"),
xaxt="n",
type="l",
main="Plot of Original Series and Forecasts",
xlab="Date",
ylab="Pressure")
###correctly formatted x axis
axis.POSIXct(1, at=seq(as.POSIXct("2016-04-19 00:00:00"),
as.POSIXct(forecasted_dates[length(forecasted_dates)]),
by="hour"),
format="%b %d",
tick = FALSE)
这将原始数据与预测绘制在一起,日期是正确的。但是,就像预测包提供的那样,也许我们希望预测是蓝色的。
###keep same plot as before
plot(y=c(forecast_sensor$x, forecast_sensor$mean),
x=seq(as.POSIXct("2016-04-19 00:00:00"),as.POSIXct(forecasted_dates[length(forecasted_dates)]), by="hour"),
xaxt="n",
type="l",
main="Plot of Original Series and Forecasts",
xlab="Date",
ylab="Pressure")
axis.POSIXct(1, at=seq(as.POSIXct("2016-04-19 00:00:00"),
as.POSIXct(forecasted_dates[length(forecasted_dates)]),
by="hour"),
format="%b %d",
tick = FALSE)
###This time however, lets add a different color line for the forecasts
lines(y=forecast_sensor$mean, x= forecasted_dates, col="blue")