我正在尝试找到一条适合我的数据的曲线,这些曲线在视觉上似乎具有幂律分布。
我希望利用scipy.optimize.curve_fit,但无论我尝试什么功能或数据规范化,我都会遇到RuntimeError(找不到参数或溢出)或者甚至远程不适合我的数据的曲线。请帮我弄清楚我在做错了什么。
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
df = pd.DataFrame({
'x': [ 1000, 3250, 5500, 10000, 32500, 55000, 77500, 100000, 200000 ],
'y': [ 1100, 500, 288, 200, 113, 67, 52, 44, 5 ]
})
df.plot(x='x', y='y', kind='line', style='--ro', figsize=(10, 5))
def func_powerlaw(x, m, c, c0):
return c0 + x**m * c
target_func = func_powerlaw
X = df['x']
y = df['y']
popt, pcov = curve_fit(target_func, X, y)
plt.figure(figsize=(10, 5))
plt.plot(X, target_func(X, *popt), '--')
plt.plot(X, y, 'ro')
plt.legend()
plt.show()
输出
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-243-17421b6b0c14> in <module>()
18 y = df['y']
19
---> 20 popt, pcov = curve_fit(target_func, X, y)
21
22 plt.figure(figsize=(10, 5))
/Users/evgenyp/.virtualenvs/kindle-dev/lib/python2.7/site-packages/scipy/optimize/minpack.pyc in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, **kwargs)
653 cost = np.sum(infodict['fvec'] ** 2)
654 if ier not in [1, 2, 3, 4]:
--> 655 raise RuntimeError("Optimal parameters not found: " + errmsg)
656 else:
657 res = least_squares(func, p0, args=args, bounds=bounds, method=method,
RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 800.
答案 0 :(得分:12)
当回溯状态时,在没有找到静止点的情况下达到最大功能评估数(以终止算法)。您可以使用选项maxfev
增加最大数量。对于此示例,设置maxfev=2000
足以成功终止算法。
然而,解决方案并不令人满意。这是由于算法选择变量的(默认)初始估计,对于这个例子,这是不好的(所需的大量迭代是这个的指示)。提供另一个初始化点(通过简单的试验和错误找到)可以很好地拟合,而不需要增加maxfev
。
两种拟合和与数据的视觉比较如下所示。
x = np.asarray([ 1000, 3250, 5500, 10000, 32500, 55000, 77500, 100000, 200000 ])
y = np.asarray([ 1100, 500, 288, 200, 113, 67, 52, 44, 5 ])
sol1 = curve_fit(func_powerlaw, x, y, maxfev=2000 )
sol2 = curve_fit(func_powerlaw, x, y, p0 = np.asarray([-1,10**5,0]))
答案 1 :(得分:1)
您的func_powerlaw
严格来说不是幂律,因为它具有加法常数。
通常来说,如果您希望对外观设计中的幂律关系进行快速的视觉评估,那么
plot(log(x),log(y))
或
loglog(x,y)
尽管它们之间存在细微的差异(特别是在曲线拟合方面),但它们两者都应给出一条直线。
所有这些都没有加法常数,这弄乱了幂律关系。
如果您想根据对数对数比例(通常是理想的)来拟合权重数据的幂定律,则可以使用下面的代码。
import numpy as np
from scipy.optimize import curve_fit
def powlaw(x, a, b) :
return a * np.power(x, b)
def linlaw(x, a, b) :
return a + x * b
def curve_fit_log(xdata, ydata) :
"""Fit data to a power law with weights according to a log scale"""
# Weights according to a log scale
# Apply fscalex
xdata_log = np.log10(xdata)
# Apply fscaley
ydata_log = np.log10(ydata)
# Fit linear
popt_log, pcov_log = curve_fit(linlaw, xdata_log, ydata_log)
#print(popt_log, pcov_log)
# Apply fscaley^-1 to fitted data
ydatafit_log = np.power(10, linlaw(xdata_log, *popt_log))
# There is no need to apply fscalex^-1 as original data is already available
return (popt_log, pcov_log, ydatafit_log)