我试图关注并重新使用一段名为@ThePredator的人建议的代码(用我自己的数据)(我无法评论该线程,因为我目前没有50的必需声誉)。完整代码如下:
import numpy as np # This is the Numpy module
from scipy.optimize import curve_fit # The module that contains the curve_fit routine
import matplotlib.pyplot as plt # This is the matplotlib module which we use for plotting the result
""" Below is the function that returns the final y according to the conditions """
def fitfunc(x,a1,a2):
y1 = (x**(a1) )[x<xc]
y2 = (x**(a1-a2) )[x>xc]
y3 = (0)[x==xc]
y = np.concatenate((y1,y2,y3))
return y
x = array([0.001, 0.524, 0.625, 0.670, 0.790, 0.910, 1.240, 1.640, 2.180, 35460])
y = array([7.435e-13, 3.374e-14, 1.953e-14, 3.848e-14, 4.510e-14, 5.702e-14, 5.176e-14, 6.0e-14,3.049e-14,1.12e-17])
""" In the above code, we have imported 3 modules, namely Numpy, Scipy and matplotlib """
popt,pcov = curve_fit(fitfunc,x,y,p0=(10.0,1.0)) #here we provide random initial parameters a1,a2
a1 = popt[0]
a2 = popt[1]
residuals = y - fitfunc(x,a1,a2)
chi-sq = sum( (residuals**2)/fitfunc(x,a1,a2) ) # This is the chi-square for your fitted curve
""" Now if you need to plot, perform the code below """
curvey = fitfunc(x,a1,a2) # This is your y axis fit-line
plt.plot(x, curvey, 'red', label='The best-fit line')
plt.scatter(x,y, c='b',label='The data points')
plt.legend(loc='best')
plt.show()
运行此代码时出现问题,我得到的错误如下:
y3 =(0)[x == xc]
TypeError:'int'对象没有属性' getitem '
还有:
xc未定义
我没有看到代码中缺少任何内容(不应该定义xc?)。
作者(@ThePredator)或其他有此知识的人请帮我辨别一下我没见过的。
新版代码:
import numpy as np # This is the Numpy module
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def fitfunc(x, a1, a2, xc):
if x.all() < xc:
y = x**a1
elif x.all() > xc:
y = x**(a1 - a2) * x**a2
else:
y = 0
return y
xc = 2
x = np.array([0.001, 0.524, 0.625, 0.670, 0.790, 0.910, 1.240, 1.640, 2.180, 35460])
y = np.array([7.435e-13, 3.374e-14, 1.953e-14, 3.848e-14, 4.510e-14, 5.702e-14, 5.176e-14, 6.0e-14,3.049e-14,1.12e-17])
popt,pcov = curve_fit(fitfunc,x,y,p0=(1.0,1.0))
a1 = popt[0]
a2 = popt[1]
residuals = y - fitfunc(x, a1, a2, xc)
chisq = sum((residuals**2)/fitfunc(x, a1, a2, xc))
curvey = [fitfunc(val, a1, a2, xc) for val in x] # y-axis fit-line
plt.plot(x, curvey, 'red', label='The best-fit line')
plt.scatter(x,y, c='b',label='The data points')
plt.legend(loc='best')
plt.show()
答案 0 :(得分:0)
您的代码中存在多个错误/拼写错误。
1)你不能在Python的变量名中使用-
(例如,卡方应为chi_square
)
2)您应from numpy import array
或将array
替换为np.array
。目前,未定义名称array
。
3)xc
未定义,您应在调用fitfunc()
之前进行设置。
4)y3 = (0)[x==xc]
无效,应该(我认为)y3 = np.zeros(len(x))[x==xc]
或y3 = np.zeros(np.sum(x==xc))
您使用fit_function()是错误的,因为它会改变图像的顺序。你想要的是:
def fit_function(x, a1, a2, xc):
if x < xc:
y = x**a1
elif x > xc:
y = x**(a1 - a2) * x**a2
else:
y = 0
return y
xc = 2 #or any value you want
curvey = [fit_function(val, a1, a2, xc) for val in x]
答案 1 :(得分:0)
您可以执行以下操作来定义您的功能,它将解决。 x是一个数组(或列表),它应该将y作为数组(或列表)返回。然后你可以在curvefit中使用它。
def fit_function(x, a1, a2, xc):
y = []
for xx in x:
if xx<xc:
y.append(x**a1)
elif xx>xc:
y.append(x**(a1 - a2) * x**a2)
else:
y.append(0.0)
return y