我的决策树如下
Act_rf <- train(Activity ~ Country + Threat + Target.Section + Author, data = CT1, method = "ranger",trControl = myCont)
然后尝试通过使用varImp(Act_rf)来获取我的变量重要性,但后来我得到了以下错误。这是为什么?我该如何解决呢。
ranger variable importance
only 20 most important variables shown (out of 665)
Overall
374 NaN
370 NaN
247 NaN
574 NaN
316 NaN
149 NaN
593 NaN
420 NaN
386 NaN
104 NaN
462 NaN
288 NaN
32 NaN
342 NaN
552 NaN
90 NaN
292 NaN
512 NaN
322 NaN
52 NaN
There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In FUN(newX[, i], ...) : no non-missing arguments to max; returning -Inf
2: In FUN(newX[, i], ...) : no non-missing arguments to max; returning -Inf
3: In FUN(newX[, i], ...) : no non-missing arguments to max; returning -Inf
...