f1(1 ^ n01 ^ m)= 1 ^ | m-n |
设计一台计算功能的图灵机(转换图)
如何跟踪中间的0? 我试图这样做,但无法弄清楚
答案 0 :(得分:2)
我假设你想要磁带字母只包含0,1和 - (空白)。在使用单磁带图灵机时,我们的策略是一个富有成效的策略:我们将在中间的0周围来回反弹,当我们找到它们时,我们会越过1秒。我们会一直持续到1
秒用完为止。此时,磁带上剩下的所有内容都是1 ^ | m-n |以及n + m + 1- | m-n |零。最后,我们将结果复制到磁带的开头(如果不是它已经存在的地方,即m> n)并擦除零。
Q s s' D Q'
// read past 1^n
q0 1 1 R q0
// read through zeroes
q0 0 0 R q1
q1 0 0 R q1
// mark out the first 1 remaining in 1^m
q1 1 0 L q2
// read through zeros backwards
q2 0 0 L q2
// mark out the last 1 remaining in 1^n
q2 1 0 R q1
// we were reading through zeroes forward
// and didn't find another 1. n >= m and
// we have deleted the same number from
// the first and last parts so just delete
// zeroes
q1 - - L q3
q3 0 - L q3
q3 1 1 L halt_accept
// we were reading through zeroes backwards
// and didn't find another 1. n < m and we
// accidentally deleted one too many symbols
// from the 1^m part. write it back and start
// copying the 1s from after the 0s back to
// the beginning of the tape. then, clear zeroes.
q2 - - R q4
q4 0 1 R q5
q5 0 0 R q5
q5 1 0 L q6
q6 0 0 L q6
q6 1 1 R q4
q5 - - L q7
q7 0 - L q7
q7 1 1 L halt_accept
当然,如果没有执行它的示例,没有TM示例是完整的。
-111110111- => -111110111- => -111110111-
^ ^ ^
q0 q0 q0
=> -111110111- => -111110111- => -111110111-
^ ^ ^
q0 q0 q0
=> -111110111- => -111110011- => -111110011-
^ ^ ^
q1 q2 q2
=> -111100011- => -111100011- => -111100011-
^ ^ ^
q1 q1 q1
=> -111100001- => -111100001- => -111100001-
^ ^ ^
q2 q2 q2
=> -111100001- => -111000001- => -111000001-
^ ^ ^
q1 q1 q1
=> -111000001- => -111000001- => -111000001-
^ ^ ^
q1 q1 q1
=> -111000000- => -111000000- => -111000000-
^ ^ ^
q2 q2 q2
=> -111000000- => -111000000- => -111000000-
^ ^ ^
q2 q2 q2
=> -110000000- => -110000000- => -110000000-
^ ^ ^
q1 q1 q1
=> -110000000- => -110000000- => -110000000-
^ ^ ^
q1 q1 q1
=> -110000000- => -110000000- => -11000000--
^ ^ ^
q1 q3 q3
=> -1100000--- => -110000---- => -11000-----
^ ^ ^
q1 q3 q3
=> -1100------ => -110------- => -11--------
^ ^ ^
q1 q3 q3
=> -11--------
^
halt_accept