对于具有通常的四个点a,b,c和d的立方Bézier曲线,
对于给定值t,
如何最优雅地找到切线?
答案 0 :(得分:32)
曲线的正切只是它的导数。 Michal使用的参数方程式:
P(t) = (1 - t)^3 * P0 + 3t(1-t)^2 * P1 + 3t^2 (1-t) * P2 + t^3 * P3
应该有
的衍生物dP(t) / dt = -3(1-t)^2 * P0 + 3(1-t)^2 * P1 - 6t(1-t) * P1 - 3t^2 * P2 + 6t(1-t) * P2 + 3t^2 * P3
顺便说一句,在你之前的问题中,这似乎是错误的。我相信你在那里使用斜率的二次贝塞尔曲线,而不是立方。
从那里开始,实现一个执行此计算的C函数应该是微不足道的,就像Michal已经为曲线本身提供的那样。
答案 1 :(得分:8)
以下是经过全面测试的复制和粘贴代码:
沿曲线绘制近似点,和绘制切线。
bezierInterpolation
找到分数
bezierTangent
找到切线
以下提供的bezierInterpolation
两个版本:
bezierInterpolation
完美无缺
altBezierInterpolation
完全相同,但它是以扩展的,非常清晰的,解释性的方式编写的。它使算术更容易理解。
使用这两个例程中的任何一个:结果相同。
在这两种情况下,使用bezierTangent
查找切线。 (注意:Michal令人难以置信的代码库here。)
还包括如何与drawRect:
一起使用的完整示例。
// MBBezierView.m original BY MICHAL stackoverflow #4058979
#import "MBBezierView.h"
CGFloat bezierInterpolation(
CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d) {
// see also below for another way to do this, that follows the 'coefficients'
// idea, and is a little clearer
CGFloat t2 = t * t;
CGFloat t3 = t2 * t;
return a + (-a * 3 + t * (3 * a - a * t)) * t
+ (3 * b + t * (-6 * b + b * 3 * t)) * t
+ (c * 3 - c * 3 * t) * t2
+ d * t3;
}
CGFloat altBezierInterpolation(
CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
// here's an alternative to Michal's bezierInterpolation above.
// the result is absolutely identical.
// of course, you could calculate the four 'coefficients' only once for
// both this and the slope calculation, if desired.
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
// it's now easy to calculate the point, using those coefficients:
return ( C1*t*t*t + C2*t*t + C3*t + C4 );
}
CGFloat bezierTangent(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
// note that abcd are aka x0 x1 x2 x3
/* the four coefficients ..
A = x3 - 3 * x2 + 3 * x1 - x0
B = 3 * x2 - 6 * x1 + 3 * x0
C = 3 * x1 - 3 * x0
D = x0
and then...
Vx = 3At2 + 2Bt + C */
// first calcuate what are usually know as the coeffients,
// they are trivial based on the four control points:
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a ); // (not needed for this calculation)
// finally it is easy to calculate the slope element,
// using those coefficients:
return ( ( 3.0 * C1 * t* t ) + ( 2.0 * C2 * t ) + C3 );
// note that this routine works for both the x and y side;
// simply run this routine twice, once for x once for y
// note that there are sometimes said to be 8 (not 4) coefficients,
// these are simply the four for x and four for y,
// calculated as above in each case.
}
@implementation MBBezierView
- (void)drawRect:(CGRect)rect {
CGPoint p1, p2, p3, p4;
p1 = CGPointMake(30, rect.size.height * 0.33);
p2 = CGPointMake(CGRectGetMidX(rect), CGRectGetMinY(rect));
p3 = CGPointMake(CGRectGetMidX(rect), CGRectGetMaxY(rect));
p4 = CGPointMake(-30 + CGRectGetMaxX(rect), rect.size.height * 0.66);
[[UIColor blackColor] set];
[[UIBezierPath bezierPathWithRect:rect] fill];
[[UIColor redColor] setStroke];
UIBezierPath *bezierPath = [[[UIBezierPath alloc] init] autorelease];
[bezierPath moveToPoint:p1];
[bezierPath addCurveToPoint:p4 controlPoint1:p2 controlPoint2:p3];
[bezierPath stroke];
[[UIColor brownColor] setStroke];
// now mark in points along the bezier!
for (CGFloat t = 0.0; t <= 1.00001; t += 0.05) {
[[UIColor brownColor] setStroke];
CGPoint point = CGPointMake(
bezierInterpolation(t, p1.x, p2.x, p3.x, p4.x),
bezierInterpolation(t, p1.y, p2.y, p3.y, p4.y));
// there, use either bezierInterpolation or altBezierInterpolation,
// identical results for the position
// just draw that point to indicate it...
UIBezierPath *pointPath =
[UIBezierPath bezierPathWithArcCenter:point
radius:5 startAngle:0 endAngle:2*M_PI clockwise:YES];
[pointPath stroke];
// now find the tangent if someone on stackoverflow knows how
CGPoint vel = CGPointMake(
bezierTangent(t, p1.x, p2.x, p3.x, p4.x),
bezierTangent(t, p1.y, p2.y, p3.y, p4.y));
// the following code simply draws an indication of the tangent
CGPoint demo = CGPointMake( point.x + (vel.x*0.3),
point.y + (vel.y*0.33) );
// (the only reason for the .3 is to make the pointers shorter)
[[UIColor whiteColor] setStroke];
UIBezierPath *vp = [UIBezierPath bezierPath];
[vp moveToPoint:point];
[vp addLineToPoint:demo];
[vp stroke];
}
}
@end
to draw that class...
MBBezierView *mm = [[MBBezierView alloc]
initWithFrame:CGRectMake(400,20, 600,700)];
[mm setNeedsDisplay];
[self addSubview:mm];
以下两个例程用于计算近似等距点,以及那些的切线,沿着贝塞尔曲线。
为了清晰和可靠,这些例程以最简单,最具说明性的方式编写。
CGFloat bezierPoint(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
return ( C1*t*t*t + C2*t*t + C3*t + C4 );
}
CGFloat bezierTangent(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
return ( ( 3.0 * C1 * t* t ) + ( 2.0 * C2 * t ) + C3 );
}
四个预先计算的值C1 C2 C3 C4有时被称为贝塞尔曲线的系数。 (回想一下,b c d通常被称为四个控制点。)
当然,t从0到1,例如每0.05。
只需为X调用这些例程,然后为Y单独调用一次。
希望它有所帮助!
重要事实:
(1)绝对事实:不幸的是,Apple提供的NO方法肯定是从UIBezierPath中提取点。
(2)不要忘记它就像使用 UIBezierPath中的动画一样简单。 Google many examples。
(3)很多人问,“不能使用CGPathApply从UIBezierPath中提取点数吗?”不, CGPathApply是完全不相关的:它只是给你制作任何路径的指示清单(所以,“从这里开始”,“直线绘制到这一点”等等。)
答案 2 :(得分:2)
我发现使用提供的公式太容易出错了。太容易错过一个微妙的或错位的支架。
相比之下,维基百科提供了更清晰,更清晰的衍生恕我直言:
...在代码中很容易实现:
3f * oneMinusT * oneMinusT * (p1 - p0)
+ 6f * t * oneMinusT * (p2 - p1)
+ 3f * t * t * (p3 - p2)
(假设您使用您选择的语言配置了vector-minus;问题并没有特别标记为ObjC,而iOS现在有几个langs可用)
答案 3 :(得分:1)
在我意识到对于参数方程,(dy / dt)/(dx / dt)= dy / dx
之前,我无法解决任何问题。答案 4 :(得分:1)
这是我的Swift实现。
我通过消除所有多余的数学运算来尽力优化速度。即进行最少次数的数学运算调用。并使用最少数量的乘法(比求和要昂贵得多)。
创建贝塞尔曲线有0个乘法。 然后进行3次相乘得到贝塞尔点。 和2个乘法来获得贝塞尔曲线的切线。
struct CubicBezier {
private typealias Me = CubicBezier
typealias Vector = CGVector
typealias Point = CGPoint
typealias Num = CGFloat
typealias Coeficients = (C: Num, S: Num, M: Num, L: Num)
let xCoeficients: Coeficients
let yCoeficients: Coeficients
static func coeficientsOfCurve(from c0: Num, through c1: Num, andThrough c2: Num, to c3: Num) -> Coeficients
{
let _3c0 = c0 + c0 + c0
let _3c1 = c1 + c1 + c1
let _3c2 = c2 + c2 + c2
let _6c1 = _3c1 + _3c1
let C = c3 - _3c2 + _3c1 - c0
let S = _3c2 - _6c1 + _3c0
let M = _3c1 - _3c0
let L = c0
return (C, S, M, L)
}
static func xOrYofCurveWith(coeficients coefs: Coeficients, at t: Num) -> Num
{
let (C, S, M, L) = coefs
return ((C * t + S) * t + M) * t + L
}
static func xOrYofTangentToCurveWith(coeficients coefs: Coeficients, at t: Num) -> Num
{
let (C, S, M, _) = coefs
return ((C + C + C) * t + S + S) * t + M
}
init(from start: Point, through c1: Point, andThrough c2: Point, to end: Point)
{
xCoeficients = Me.coeficientsOfCurve(from: start.x, through: c1.x, andThrough: c2.x, to: end.x)
yCoeficients = Me.coeficientsOfCurve(from: start.y, through: c1.y, andThrough: c2.y, to: end.y)
}
func x(at t: Num) -> Num {
return Me.xOrYofCurveWith(coeficients: xCoeficients, at: t)
}
func y(at t: Num) -> Num {
return Me.xOrYofCurveWith(coeficients: yCoeficients, at: t)
}
func dx(at t: Num) -> Num {
return Me.xOrYofTangentToCurveWith(coeficients: xCoeficients, at: t)
}
func dy(at t: Num) -> Num {
return Me.xOrYofTangentToCurveWith(coeficients: yCoeficients, at: t)
}
func point(at t: Num) -> Point {
return .init(x: x(at: t), y: y(at: t))
}
func tangent(at t: Num) -> Vector {
return .init(dx: dx(at: t), dy: dy(at: t))
}
}
使用方式:
let bezier = CubicBezier.init(from: .zero, through: .zero, andThrough: .zero, to: .zero)
let point02 = bezier.point(at: 0.2)
let point07 = bezier.point(at: 0.7)
let tangent01 = bezier.tangent(at: 0.1)
let tangent05 = bezier.tangent(at: 0.5)