令a和b为具有8位整数(0-255)的相同大小的向量。我想计算那些矢量不同的比特数,即通过串联这些数字的二进制表示形成的矢量之间的汉明距离。例如:
a = [127,255]
b= [127,240]
使用numpy库
np.bitwise_xor(a,b)
# Output: array([ 0, 15])
我现在需要的是二进制表示上述数组的每个元素,并在数组的所有元素中计数1的数量。以上示例将给出汉明距离0 + 4 = 4.在Python中任何快速而优雅的解决方案?
答案 0 :(得分:7)
方法#1:我们可以将它们广播成二进制位&计算不同位的数量,如此 -
def hamming_distance(a, b):
r = (1 << np.arange(8))[:,None]
return np.count_nonzero( (a & r) != (b & r) )
示例运行 -
In [144]: a = [127,255]
...: b = [127,240]
...:
In [145]: hamming_distance(a, b)
Out[145]: 4
方法#2:使用bitwise-xor
操作,我们可以找出a
和b
之间不同二进制位的数量 -
def hamming_distance_v2(a, b):
r = (1 << np.arange(8))[:,None]
return np.count_nonzero((np.bitwise_xor(a,b) & r) != 0)
答案 1 :(得分:5)
如果要在程序执行期间多次调用距离函数,可以使用预先计算的位计数表来获得一些速度。这是汉明距离函数的另一个版本:
# _nbits[k] is the number of 1s in the binary representation of k for 0 <= k < 256.
_nbits = np.array(
[0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3,
4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4,
4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2,
3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5,
4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4,
5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3,
3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2,
3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,
6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5,
5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6,
7, 7, 8], dtype=np.uint8)
def hamming_distance1(a, b):
c = np.bitwise_xor(a, b)
n = _nbits[c].sum()
return n
在下文中,a
和b
是在问题评论中给出的长度为32的Python列表。 divakar_hamming_distance()
和divakar_hamming_distance_v2()
来自@Divakar的回答。
以下是@Divakar职能的时间安排:
In [116]: %timeit divakar_hamming_distance(a, b)
The slowest run took 5.57 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 11.3 µs per loop
In [117]: %timeit divakar_hamming_distance_v2(a, b)
The slowest run took 5.35 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 10.3 µs per loop
hamming_distance1(a, b)
有点快:
In [118]: %timeit hamming_distance1(a, b)
The slowest run took 6.04 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 7.42 µs per loop
在我的计算机上,初始化_nbits
大约需要11μs,因此如果只调用一次该函数,则使用hamming_distance1
没有任何好处。如果你打三次或更多次,那么性能会有净增长。
如果输入已经是numpy数组,那么所有函数都要快得多:
In [119]: aa = np.array(a)
In [120]: bb = np.array(b)
In [121]: %timeit divakar_hamming_distance_v2(aa, bb)
The slowest run took 8.22 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 5.72 µs per loop
In [122]: %timeit hamming_distance1(aa, bb)
The slowest run took 12.67 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 2.77 µs per loop
当然,如果您在计算汉明距离之前总是这样做,那么进行转换的时间必须包含在整体时间中。但是,如果您编写生成a
和b
的代码以利用先前的numpy,那么在计算汉明距离时,您可能已将它们作为numpy数组。
(我还对8位值之间的预计汉明距离的二维数组进行了实验 - 一个形状为(256,256)的数组 - 但初始化成本更高,性能增益也很小。)
答案 2 :(得分:1)
也许不是最有效的方法,但最简单的imo是将你的ouptut数组转换为二进制形式的字符串,然后将所有转换回字符的字符的总和...
import numpy as np
output = np.random.randint(0,63,10)
hamming = ['{:b}'.format(x).count('1') for x in output]
答案 3 :(得分:0)
sum(bin(x).count("1") for x in np.bitwise_xor(a,b))