我正在寻找一种生成球形网格的3d坐标的算法(伪代码):
水平和横向切片的数量应该是可配置的
答案 0 :(得分:36)
如果有M行纬度(水平)和N行经度(垂直),则将点放在
(x,y,z)=(sin(Pi * m / M)cos(2Pi * n / N),sin(Pi * m / M)sin(2Pi * n / N),cos(Pi *米/ M))
对于{0,...,M}中的每个m和{0,...,N-1}中的n,并相应地绘制点之间的线段。
编辑:可以根据需要将M调整1或2,因为您应该决定是否计算极点处的“纬度线”
答案 1 :(得分:2)
如果没有测试,这只是我的头脑。这可能是一个很好的起点。 如果您使用double,这将为您提供最准确和最可定制的结果。
public void generateSphere(3DPoint center, 3DPoint northPoint, int longNum, int latNum){
//Find radius using simple length equation (distance between center and northPoint)
//Find southPoint using radius.
//Cut the line segment from northPoint to southPoint into the latitudinal number
//These will be the number of horizontal slices (ie. equator)
//Then divide 360 degrees by the longitudinal number to find the number of vertical slices.
//Use trigonometry to determine the angle and then the curcumference point for each circle starting from the top.
//Stores these points in however format you want and return the data structure.
}
答案 2 :(得分:1)
只是一个猜测,你可以使用以(0,0,0)
为中心的球体的公式x²+y²+z²=1
为x解决此问题,然后通过y和z的一组值进行循环,并使用计算出的x绘制它们。
答案 3 :(得分:0)
这是上述答案的有效C#代码:
using UnityEngine;
[RequireComponent(typeof(MeshFilter), typeof(MeshRenderer))]
public class ProcSphere : MonoBehaviour
{
private Mesh mesh;
private Vector3[] vertices;
public int horizontalLines, verticalLines;
public int radius;
private void Awake()
{
GetComponent<MeshFilter>().mesh = mesh = new Mesh();
mesh.name = "sphere";
vertices = new Vector3[horizontalLines * verticalLines];
int index = 0;
for (int m = 0; m < horizontalLines; m++)
{
for (int n = 0; n < verticalLines - 1; n++)
{
float x = Mathf.Sin(Mathf.PI * m/horizontalLines) * Mathf.Cos(2 * Mathf.PI * n/verticalLines);
float y = Mathf.Sin(Mathf.PI * m/horizontalLines) * Mathf.Sin(2 * Mathf.PI * n/verticalLines);
float z = Mathf.Cos(Mathf.PI * m / horizontalLines);
vertices[index++] = new Vector3(x, y, z) * radius;
}
}
mesh.vertices = vertices;
}
private void OnDrawGizmos()
{
if (vertices == null) {
return;
}
for (int i = 0; i < vertices.Length; i++) {
Gizmos.color = Color.black;
Gizmos.DrawSphere(transform.TransformPoint(vertices[i]), 0.1f);
}
}
}
答案 4 :(得分:-1)
FWIW,您可以使用meshzoo(属于我的项目)非常容易地在球面上生成网格。
您可以选择使用optimesh(我藏匿处的另一个)进一步优化。
import meshzoo
import optimesh
points, cells = meshzoo.icosa_sphere(10)
class Sphere:
def f(self, x):
return (x[0] ** 2 + x[1] ** 2 + x[2] ** 2) - 1.0
def grad(self, x):
return 2 * x
points, cells = optimesh.cvt.quasi_newton_uniform_full(
points, cells, 1.0e-2, 100, verbose=False,
implicit_surface=Sphere(),
# step_filename_format="out{:03d}.vtk"
)