我需要计算2个向量中每个单词之间的Jaccard相似度。每个单词由每个单词组成。并提取最相似的词。
这是我糟糕的慢速代码:
txt1 <- c('The quick brown fox jumps over the lazy dog')
txt2 <- c('Te quick foks jump ovar lazey dogg')
words <- strsplit(as.character(txt1), " ")
words.p <- strsplit(as.character(txt2), " ")
r <- length(words[[1]])
c <- length(words.p[[1]])
m <- matrix(nrow=r, ncol=c)
for (i in 1:r){
for (j in 1:c){
m[i,j] = stringdist(tolower(words.p[[1]][j]), tolower(words[[1]][i]), method='jaccard', q=2)
}
}
ind <- which(m == min(m))-nrow(m)
words[[1]][ind]
请帮助我改进和美化大数据框架的代码。
答案 0 :(得分:3)
准备(在此处添加tolower
):
txt1 <- c('The quick brown fox jumps over the lazy dog')
txt2 <- c('Te quick foks jump ovar lazey dogg')
words <- unlist(strsplit(tolower(as.character(txt1)), " "))
words.p <- unlist(strsplit(tolower(as.character(txt2)), " "))
获取每个单词的距离:
dists <- sapply(words, Map, f=stringdist, list(words.p), method="jaccard")
words
中的每个单词都会找到words.p
中最接近的单词:
matches <- words.p[sapply(dists, which.min)]
cbind(words, matches)
matches
[1,] "the" "te"
[2,] "quick" "quick"
[3,] "brown" "ovar"
[4,] "fox" "foks"
[5,] "jumps" "jump"
[6,] "over" "ovar"
[7,] "the" "te"
[8,] "lazy" "lazey"
[9,] "dog" "dogg"
编辑:
要获得最匹配的单词对,首先需要选择words
中每个单词与words.p
中所有单词的最小距离:
mindists <- sapply(dists, min)
这将为每个单词提供最佳距离。然后从words
选择具有最小距离的单词:
words[which.min(mindists)]
或者在一行中:
words[which.min(sapply(dists, min))]