我有数据框
(index) purchased sold price
2013-04-04 14.865494 14.800361 12.762369
2013-04-05 15.191654 15.296572 12.777120
2013-04-06 15.402671 15.844089 12.773146
2013-04-07 15.840517 15.437765 12.780774
且索引为df.index
:
DatetimeIndex(['2013-04-04', '2013-04-05', '2013-04-06', '2013-04-07',
'2013-04-08', '2013-04-09', '2013-04-11', '2013-04-12',
'2013-04-14', '2013-04-15',
dtype='datetime64[ns]', name='date',length=273,freq=None)
我需要编写一个模型来使用分解来减少数据中的季节性: 我写了这段代码:
from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(df)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
但它会引发decomposition = seasonal_decompose(df)
ValueError:您必须指定freq或x必须是带有时间序列索引的pandas对象
有什么问题? 还有其他办法吗?