stock<-structure(list(week = c(1L, 2L, 5L, 2L, 3L, 4L, 3L, 2L, 1L, 5L,
1L, 3L, 2L, 4L, 3L, 4L, 2L, 3L, 1L, 4L, 3L),
close_price = c(774000L,
852000L, 906000L, 870000L, 1049000L, 941000L, 876000L, 874000L,
909000L, 966000L, 977000L, 950000L, 990000L, 948000L, 1079000L,
NA, 913000L, 932000L, 1020000L, 872000L, 916000L),
vol = c(669L,
872L, 3115L, 2693L, 575L, 619L, 646L, 1760L, 419L, 587L, 8922L,
366L, 764L, 6628L, 1116L, NA, 572L, 592L, 971L, 1181L, 1148L),
obv = c(1344430L, 1304600L, 1325188L, 1322764L, 1365797L,
1355525L, 1308385L, 1308738L, 1353999L, 1364475L, 1326557L,
1357572L, 1362492L, 1322403L, 1364273L, NA, 1354571L, 1354804L,
1363256L, 1315441L, 1327927L)),
.Names = c("week", "close_price", "vol", "obv"),
row.names = c(16L, 337L, 245L, 277L, 193L, 109L, 323L, 342L, 106L,
170L, 226L, 133L, 72L, 234L, 208L, 329L, 107L, 103L, 71L, 284L, 253L),
class = "data.frame")
我的数据集就像这个名为Nam
的表格,其观察值为349,我希望nnet
使用predict close_price
。
obs<- sample(1:21, 20*0.5, replace=F)
tr.Nam<- stock[obs,]; st.Nam<- stock[-obs,]
# tr.Nam is a training data set while st.Nam is test data.
library(nnet)
Nam_nnet<-nnet(close_price~., data=tr.Nam, size=2, decay=5e-4)
通过这个声明,我认为我做了一个预测close_price
的功能。
summary(Nam_nnet)
y<-tr.Nam$close_price
p<-predict(Nam_nnet, tr.Nam, type="raw")
我希望p
成为close_price
的预测值,但它的值只有1.为什么p
的连续值不是close_price
?
tt<-table(y,p)
summary(tt)
tt
答案 0 :(得分:1)
我认为我可以通过可重复的示例做得更好,但我认为问题可能是一个(或多个)原因。首先,执行str(数据)以确保每个变量的类型正确(因子,数字等)。此外,神经网络通常对标准化,缩放和居中数据做出更好的响应,否则输入会因较大的数字输入而变得过饱和,如果“周”变量是数字,则可能就是这种情况。
总之,一定要检查每个变量的类型,以确保输入正确的表格,并考虑将数据缩放为平滑,因此输入的幅度相当。