我正在尝试创建一个python程序,它采用灰度,24 * 24像素图像文件(我还没有决定类型,所以欢迎建议)并将其转换为0的像素值列表(白色)到255(黑色)。
我打算使用这个数组创建一个类似MNIST的图片字节文件,可以通过Tensor-Flow手写识别算法识别。
通过迭代每个像素并将其值附加到数组,我发现Pillow library在此任务中最有用 来自PIL导入图像
img = Image.open('eggs.png').convert('1')
rawData = img.load()
data = []
for y in range(24):
for x in range(24):
data.append(rawData[x,y])
然而这个解决方案有两个问题(1)像素值不是作为整数存储,而是像素对象不能进一步数学处理,因此是无用的。 (2)甚至Pillow文件都说:
访问单个像素相当慢。如果您循环遍历图像中的所有>像素,则可能更快地使用>枕头API的其他部分。
答案 0 :(得分:10)
您可以将图像数据转换为Python列表(或列表列表),如下所示:
from PIL import Image
img = Image.open('eggs.png').convert('L') # convert image to 8-bit grayscale
WIDTH, HEIGHT = img.size
data = list(img.getdata()) # convert image data to a list of integers
# convert that to 2D list (list of lists of integers)
data = [data[offset:offset+WIDTH] for offset in range(0, WIDTH*HEIGHT, WIDTH)]
# At this point the image's pixels are all in memory and can be accessed
# individually using data[row][col].
# For example:
for row in data:
print(' '.join('{:3}'.format(value) for value in row))
# Here's another more compact representation.
chars = '@%#*+=-:. ' # Change as desired.
scale = (len(chars)-1)/255.
print()
for row in data:
print(' '.join(chars[int(value*scale)] for value in row))
以下是我用于测试的小型24x24 RGB eggs.png
图像的放大版本:
以下是第一个访问示例的输出:
这里是第二个例子的输出:
@ @ % * @ @ @ @ % - . * @ @ @ @ @ @ @ @ @ @ @ @
@ @ . . + @ # . = @ @ @ @ @ @ @ @ @ @ @ @
@ * . . * @ @ @ @ @ @ @ @ @ @ @ @
@ # . . . . + % % @ @ @ @ # = @ @ @ @
@ % . : - - - : % @ % : # @ @ @
@ # . = = - - - = - . . = = % @ @ @
@ = - = : - - : - = . . . : . % @ @ @
% . = - - - - : - = . . - = = = - @ @ @
= . - = - : : = + - : . - = - : - = : * %
- . . - = + = - . . - = : - - - = . -
= . : : . - - . : = - - - - - = . . %
% : : . . : - - . : = - - - : = : # @
@ # : . . = = - - = . = + - - = - . . @ @
@ @ # . - = : - : = - . - = = : . . # @
@ @ % : = - - - : = - : - . . . - @
@ @ * : = : - - - = . . - . . . + @
@ # . = - : - = : : : . - % @ @ @
* . . . : = = - : . . - . - @ @ @ @ @
* . . . : . . . - = . = @ @ @ @ @ @
@ : - - . . . . # @ @ @ @ @ @ @ @
@ @ = # @ @ * . . . - @ @ @ @ @ @ @ @ @
@ @ @ @ @ @ @ . . . # @ @ @ @ @ @ @ @ @ @ @
@ @ @ @ @ @ @ - . % @ @ @ @ @ @ @ @ @ @ @ @
@ @ @ @ @ @ @ # . : % @ @ @ @ @ @ @ @ @ @ @ @ @
访问像素数据现在应该比使用对象img.load()
返回更快(并且值将是0..255范围内的整数)。
答案 1 :(得分:1)
您可以通过访问r,g或b值来访问每个像素的灰度值,对于灰度图像,这些值都是相同的。
即
img = Image.open('eggs.png').convert('1')
rawData = img.load()
data = []
for y in range(24):
for x in range(24):
data.append(rawData[x,y][0])
这并不能解决访问速度的问题。
我比枕头更熟悉scikit-image。在我看来,如果你所有人都在列出灰度值,你可以使用scikit-image,它将图像存储为numpy数组,并使用img_as_ubyte将图像表示为uint数组,包含0到255之间的值。 / p>
Images are NumPy Arrays提供了一个很好的起点,可以看到代码的样子。