边缘列表中的Scipy稀疏矩阵

时间:2016-11-03 10:37:39

标签: python r matrix scipy sna

如何将 边缘列表 data)转换为python scipy稀疏矩阵 得到这个结果:

sparse matrix in R

数据集(其中'agn'是节点类别1,'fct'是节点类别2):

data['agn'].tolist()
['p1', 'p1', 'p1', 'p1', 'p1', 'p2', 'p2', 'p2', 'p2', 'p3', 'p3', 'p3', 'p4', 'p4', 'p5']

data['fct'].tolist()
['f1', 'f2', 'f3', 'f4', 'f5', 'f3', 'f4', 'f5', 'f6', 'f5', 'f6', 'f7', 'f7', 'f8', 'f9']

(不工作)python代码:

from scipy.sparse import csr_matrix, coo_matrix

csr_matrix((data_sub['agn'].values, data['fct'].values), 
                    shape=(len(set(data['agn'].values)), len(set(data_sub['fct'].values))))

- > 错误:“TypeError:输入格式无效” 我真的需要三个数组来构造矩阵,就像scipy csr文档中的示例所做的那样(只能使用两个链接,抱歉!)?

(工作)用于构造仅有两个向量的矩阵的R代码:

library(Matrix)

grph_tim <- sparseMatrix(i = as.numeric(data$agn), 
                     j = as.numeric(data$fct),  
                     dims = c(length(levels(data$agn)),
                              length(levels(data$fct))),
                     dimnames = list(levels(data$agn),
                                     levels(data$fct)))

修改: 在我修改here的代码并添加了所需的数组后,它终于起作用了:

import numpy as np
import pandas as pd
import scipy.sparse as ss

def read_data_file_as_coo_matrix(filename='edges.txt'):
    "Read data file and return sparse matrix in coordinate format."

    # if the nodes are integers, use 'dtype = np.uint32'
    data = pd.read_csv(filename, sep = '\t', encoding = 'utf-8')

    # where 'rows' is node category one and 'cols' node category 2
    rows = data['agn']  # Not a copy, just a reference.
    cols = data['fct']

    # crucial third array in python, which can be left out in r
    ones = np.ones(len(rows), np.uint32)
    matrix = ss.coo_matrix((ones, (rows, cols)))
    return matrix

此外,我将节点的字符串名称转换为整数。因此data['agn']变为[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]data['fct']变为[0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 6, 7, 8]

我得到了这个稀疏矩阵:

  

(0,0)1     (0,1)1     (0,2)1     (0,3)1     (0,4)1     (1,2)1     (1,3)1     (1,4)1     (1,5)1     (2,4)1     (2,5)1     (2,6)1     (3,6)1     (3,7)1     (4,8)1

1 个答案:

答案 0 :(得分:0)

在我修改了here中的代码并添加了所需的数组之后,它终于工作了:

import numpy as np
import pandas as pd
import scipy.sparse as ss

def read_data_file_as_coo_matrix(filename='edges.txt'):
    "Read data file and return sparse matrix in coordinate format."

    # if the nodes are integers, use 'dtype = np.uint32'
    data = pd.read_csv(filename, sep = '\t', encoding = 'utf-8')

    # where 'rows' is node category one and 'cols' node category 2
    rows = data['agn']  # Not a copy, just a reference.
    cols = data['fct']

    # crucial third array in python, which can be left out in r
    ones = np.ones(len(rows), np.uint32)
    matrix = ss.coo_matrix((ones, (rows, cols)))
    return matrix

此外,我将节点的字符串名称转换为整数。因此data['agn']变成[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4],而data['fct']变成[0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 6, 7, 8]

我得到了这个稀疏矩阵:

(0,0)1 (0,1)1 (0,2)1 (0,3)1 (0,4)1 (1、2)1 (1,3)1 (1,4)1 (1、5)1 (2、4)1 (2、5)1 (2、6)1 (3,6)1 (3,7)1 (4,8)1