如何将 边缘列表 (data)转换为python scipy稀疏矩阵 得到这个结果:
数据集(其中'agn'是节点类别1,'fct'是节点类别2):
data['agn'].tolist()
['p1', 'p1', 'p1', 'p1', 'p1', 'p2', 'p2', 'p2', 'p2', 'p3', 'p3', 'p3', 'p4', 'p4', 'p5']
data['fct'].tolist()
['f1', 'f2', 'f3', 'f4', 'f5', 'f3', 'f4', 'f5', 'f6', 'f5', 'f6', 'f7', 'f7', 'f8', 'f9']
(不工作)python代码:
from scipy.sparse import csr_matrix, coo_matrix
csr_matrix((data_sub['agn'].values, data['fct'].values),
shape=(len(set(data['agn'].values)), len(set(data_sub['fct'].values))))
- > 错误:“TypeError:输入格式无效” 我真的需要三个数组来构造矩阵,就像scipy csr文档中的示例所做的那样(只能使用两个链接,抱歉!)?
(工作)用于构造仅有两个向量的矩阵的R代码:
library(Matrix)
grph_tim <- sparseMatrix(i = as.numeric(data$agn),
j = as.numeric(data$fct),
dims = c(length(levels(data$agn)),
length(levels(data$fct))),
dimnames = list(levels(data$agn),
levels(data$fct)))
修改: 在我修改here的代码并添加了所需的数组后,它终于起作用了:
import numpy as np
import pandas as pd
import scipy.sparse as ss
def read_data_file_as_coo_matrix(filename='edges.txt'):
"Read data file and return sparse matrix in coordinate format."
# if the nodes are integers, use 'dtype = np.uint32'
data = pd.read_csv(filename, sep = '\t', encoding = 'utf-8')
# where 'rows' is node category one and 'cols' node category 2
rows = data['agn'] # Not a copy, just a reference.
cols = data['fct']
# crucial third array in python, which can be left out in r
ones = np.ones(len(rows), np.uint32)
matrix = ss.coo_matrix((ones, (rows, cols)))
return matrix
此外,我将节点的字符串名称转换为整数。因此data['agn']
变为[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
而data['fct']
变为[0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 6, 7, 8]
。
我得到了这个稀疏矩阵:
(0,0)1 (0,1)1 (0,2)1 (0,3)1 (0,4)1 (1,2)1 (1,3)1 (1,4)1 (1,5)1 (2,4)1 (2,5)1 (2,6)1 (3,6)1 (3,7)1 (4,8)1
答案 0 :(得分:0)
在我修改了here中的代码并添加了所需的数组之后,它终于工作了:
import numpy as np
import pandas as pd
import scipy.sparse as ss
def read_data_file_as_coo_matrix(filename='edges.txt'):
"Read data file and return sparse matrix in coordinate format."
# if the nodes are integers, use 'dtype = np.uint32'
data = pd.read_csv(filename, sep = '\t', encoding = 'utf-8')
# where 'rows' is node category one and 'cols' node category 2
rows = data['agn'] # Not a copy, just a reference.
cols = data['fct']
# crucial third array in python, which can be left out in r
ones = np.ones(len(rows), np.uint32)
matrix = ss.coo_matrix((ones, (rows, cols)))
return matrix
此外,我将节点的字符串名称转换为整数。因此data['agn']
变成[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
,而data['fct']
变成[0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 6, 7, 8]
。
我得到了这个稀疏矩阵:
(0,0)1 (0,1)1 (0,2)1 (0,3)1 (0,4)1 (1、2)1 (1,3)1 (1,4)1 (1、5)1 (2、4)1 (2、5)1 (2、6)1 (3,6)1 (3,7)1 (4,8)1