我正在使用sklearn LabelSpreadingModel
,如下所示:
label_spreading_model = LabelSpreading()
model_s = label_spreading_model.fit(my_inputs, labels)
但是我收到了以下错误:
MemoryErrorTraceback (most recent call last)
<ipython-input-17-73adbf1fc908> in <module>()
11
12 label_spreading_model = LabelSpreading()
---> 13 model_s = label_spreading_model.fit(my_inputs, labels)
/usr/local/lib/python2.7/dist-packages/sklearn/semi_supervised/label_propagation.pyc in fit(self, X, y)
224
225 # actual graph construction (implementations should override this)
--> 226 graph_matrix = self._build_graph()
227
228 # label construction
/usr/local/lib/python2.7/dist-packages/sklearn/semi_supervised/label_propagation.pyc in _build_graph(self)
455 affinity_matrix = self._get_kernel(self.X_)
456 laplacian = graph_laplacian(affinity_matrix, normed=True)
--> 457 laplacian = -laplacian
458 if sparse.isspmatrix(laplacian):
459 diag_mask = (laplacian.row == laplacian.col)
MemoryError:
我的输入矩阵的laplacian看起来有问题。我可以配置任何参数或任何可以避免此错误的更改吗?谢谢!
答案 0 :(得分:3)
很明显:你的电脑内存不足。
由于您没有设置任何参数,默认情况下会使用 rbf-kernel (proof)。
The RBF kernel will produce a fully connected graph which is represented in
memory by a dense matrix. This matrix may be very large and combined with the
cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times
以下(上述文档中的下一句)可能会有所帮助:
On the other hand, the KNN kernel will produce a much more memory-friendly
sparse matrix which can drastically reduce running times.
但我不知道您的数据,PC配置和公司。并且只能猜测...