假设我们有两个样本data1
和data2
及其各自的权重weight1
和weight2
,我们想要计算两者之间的Kolmogorov-Smirnov统计量加权样本。
我们在python中的方式如下:
def ks_w(data1,data2,wei1,wei2):
ix1=np.argsort(data1)
ix2=np.argsort(data2)
wei1=wei1[ix1]
wei2=wei2[ix2]
data1=data1[ix1]
data2=data2[ix2]
d=0.
fn1=0.
fn2=0.
j1=0
j2=0
j1w=0.
j2w=0.
while(j1<len(data1))&(j2<len(data2)):
d1=data1[j1]
d2=data2[j2]
w1=wei1[j1]
w2=wei2[j2]
if d1<=d2:
j1+=1
j1w+=w1
fn1=(j1w)/sum(wei1)
if d2<=d1:
j2+=1
j2w+=w2
fn2=(j2w)/sum(wei2)
if abs(fn2-fn1)>d:
d=abs(fn2-fn1)
return d
我们只是根据我们的目的修改了经典的双样本KS统计量,如 Press,Flannery,Teukolsky,Vetterling - C中的数字食谱 - 剑桥大学出版社 - 1992年 - 第626页所实现的。
我们的问题是:
答案 0 :(得分:4)
研究scipy.stats.ks_2samp
代码,我们能够找到更高效的python解决方案。如果有人有兴趣,我们将在下面分享:
from __future__ import division # (for python 2/3 support)
import numpy as np
def ks_w2(data1, data2, wei1, wei2):
ix1 = np.argsort(data1)
ix2 = np.argsort(data2)
data1 = data1[ix1]
data2 = data2[ix2]
wei1 = wei1[ix1]
wei2 = wei2[ix2]
data = np.concatenate([data1, data2])
cwei1 = np.hstack([0, np.cumsum(wei1)/sum(wei1)])
cwei2 = np.hstack([0, np.cumsum(wei2)/sum(wei2)])
cdf1we = cwei1[[np.searchsorted(data1, data, side='right')]]
cdf2we = cwei2[[np.searchsorted(data2, data, side='right')]]
return np.max(np.abs(cdf1we - cdf2we))
为了评估性能,我们进行了以下测试:
ds1 = random.rand(10000)
ds2 = random.randn(40000) + .2
we1 = random.rand(10000) + 1.
we2 = random.rand(40000) + 1.
ks_w2(ds1, ds2, we1, we2)
在我们的机器上花了11.7毫秒,而ks_w(ds1, ds2, we1, we2)
花费了1.43秒
答案 1 :(得分:0)
这是遵循Monohan,pg的《数值统计方法》的建议的两尾加权KS统计量的R版本。 1E和pg中的334。 2E中为358。
ks_weighted <- function(vector_1,vector_2,weights_1,weights_2){
F_vec_1 <- ewcdf(vector_1, weights = weights_1, normalise=FALSE)
F_vec_2 <- ewcdf(vector_2, weights = weights_2, normalise=FALSE)
xw <- c(vector_1,vector_2)
d <- max(abs(F_vec_1(xw) - F_vec_2(xw)))
## P-VALUE with NORMAL SAMPLE
# n_vector_1 <- length(vector_1)
# n_vector_2<- length(vector_2)
# n <- n_vector_1 * n_vector_2/(n_vector_1 + n_vector_2)
# P-VALUE EFFECTIVE SAMPLE SIZE as suggested by Monahan
n_vector_1 <- sum(weights_1)^2/sum(weights_1^2)
n_vector_2 <- sum(weights_2)^2/sum(weights_2^2)
n <- n_vector_1 * n_vector_2/(n_vector_1 + n_vector_2)
pkstwo <- function(x, tol = 1e-06) {
if (is.numeric(x))
x <- as.double(x)
else stop("argument 'x' must be numeric")
p <- rep(0, length(x))
p[is.na(x)] <- NA
IND <- which(!is.na(x) & (x > 0))
if (length(IND))
p[IND] <- .Call(stats:::C_pKS2, p = x[IND], tol)
p
}
pval <- 1 - pkstwo(sqrt(n) * d)
out <- c(KS_Stat=d, P_value=pval)
return(out)
}