我是python的新手,在这种情况下,我想把我的函数放到2d数组中,所以我可以绘制函数。这是我的三角函数,我用它来模糊逻辑:
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:drawableRight="@drawable/your_drawable"/>
我正在尝试使用numpy制作数组,
def triangle (z,a,b,c):
if (z<=a) | (z>=c):
y = 0
elif (a<=z) & (z<=b):
y = (z-a) / (b-a)
elif (b<=z) & (z<=c):
y = (b-z) / (c-b)
return y
但我无法完成,
我试图使用模糊库,但没有任何作用。
答案 0 :(得分:2)
a, b, c
和z
之间看起来np.linspace
是常数而a
是c
。
您可以使用Boolean Indexing,SciPy cookbook/Indexing
a = 1
b = 2
c = 3
def triangle (z, a = a, b = b, c = c):
y = np.zeros(z.shape)
y[z <= a] = 0
y[z >= c] = 0
first_half = np.logical_and(a < z, z <= b)
y[first_half] = (z[first_half]-a) / (b-a)
second_half = np.logical_and(b < z, z < c)
y[second_half] = (c-z[second_half]) / (c-b)
return y
z = np.linspace(a, c, num = 51)
y = triangle(z, a, b, c)
q = np.vstack((z, y)) # shape = (2, 50) ... [[z, z, z, ...], [y, y, y, ...]]
q = q.T # shape = (50, 2) ... [[z, y], [z, y], ....]
当你在比较表达式中使用numpy ndarray时,结果是一个布尔数组:
>>> q = np.linspace(0, 20, num = 50)
>>> print(q)
[ 0. 0.40816327 0.81632653 1.2244898 1.63265306
2.04081633 2.44897959 2.85714286 3.26530612 3.67346939
4.08163265 4.48979592 4.89795918 5.30612245 5.71428571
6.12244898 6.53061224 6.93877551 7.34693878 7.75510204
8.16326531 8.57142857 8.97959184 9.3877551 9.79591837
10.20408163 10.6122449 11.02040816 11.42857143 11.83673469
12.24489796 12.65306122 13.06122449 13.46938776 13.87755102
14.28571429 14.69387755 15.10204082 15.51020408 15.91836735
16.32653061 16.73469388 17.14285714 17.55102041 17.95918367
18.36734694 18.7755102 19.18367347 19.59183673 20. ]
>>> print(q < 5)
[ True True True True True True True True True True True True
True False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False]
>>> print(q > 15)
[False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False True True True True True True True True True True True
True True]
>>> print(np.logical_and(q > 5, q < 15))
[False False False False False False False False False False False False
False True True True True True True True True True True True
True True True True True True True True True True True True
True False False False False False False False False False False False
False False]
>>>
您可以使用布尔数组选择符合条件的数组部分:
>>> q[np.logical_and(q > 7, q < 11)]
array([ 7.34693878, 7.75510204, 8.16326531, 8.57142857,
8.97959184, 9.3877551 , 9.79591837, 10.20408163, 10.6122449 ])
>>>
在赋值语句中使用布尔索引时,右侧仅分配给比较为True
的索引:
>>> q[np.logical_and(q > 7, q < 11)] = -1
>>> print(q)
[ 0. 0.40816327 0.81632653 1.2244898 1.63265306
2.04081633 2.44897959 2.85714286 3.26530612 3.67346939
4.08163265 4.48979592 4.89795918 5.30612245 5.71428571
6.12244898 6.53061224 6.93877551 -1. -1. -1. -1.
-1. -1. -1. -1. -1. 11.02040816
11.42857143 11.83673469 12.24489796 12.65306122 13.06122449
13.46938776 13.87755102 14.28571429 14.69387755 15.10204082
15.51020408 15.91836735 16.32653061 16.73469388 17.14285714
17.55102041 17.95918367 18.36734694 18.7755102 19.18367347
19.59183673 20. ]
>>>