我正在编写一个程序来计算每个数字的总和,最多1000个。例如,1 + 2 + 3 + 4 + 5 .... + 100。首先,我将求和作业分配给10个处理器:处理器0得到1-100,处理器1得到101-200,依此类推。总和存储在一个数组中。
在所有求和并行完成后,处理器将其值发送到处理器0(处理器0使用非阻塞发送/接收来接收值),处理器0将所有值汇总并显示结果。
以下是代码:
#include <mpi.h>
#include <iostream>
using namespace std;
int summation(int, int);
int main(int argc, char ** argv)
{
int * array;
int total_proc;
int curr_proc;
int limit = 0;
int partial_sum = 0;
int upperlimit = 0, lowerlimit = 0;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &total_proc);
MPI_Comm_rank(MPI_COMM_WORLD, &curr_proc);
MPI_Request send_request, recv_request;
/* checking if 1000 is divisible by number of procs, else quit */
if(1000 % total_proc != 0)
{
MPI_Finalize();
if(curr_proc == 0)
cout << "**** 1000 is not divisible by " << total_proc << " ...quitting..."<< endl;
return 0;
}
/* number of partial summations */
limit = 1000/total_proc;
array = new int [total_proc];
/* assigning jobs to processors */
for(int i = 0; i < total_proc; i++)
{
if(curr_proc == i)
{
upperlimit = upperlimit + limit;
lowerlimit = (upperlimit - limit) + 1;
partial_sum = summation(upperlimit, lowerlimit);
array[i] = partial_sum;
}
else
{
upperlimit = upperlimit + limit;
lowerlimit = (upperlimit - limit) + 1;
}
}
cout << "** Partial Sum From Process " << curr_proc << " is " << array[curr_proc] << endl;
/* send and receive - non blocking */
for(int i = 1; i < total_proc; i++)
{
if(curr_proc == i) /* (i = current processor) */
{
MPI_Isend(&array[i], 1, MPI_INT, 0, i, MPI_COMM_WORLD, &send_request);
cout << "-> Process " << i << " sent " << array[i] << " to Process 0" << endl;
MPI_Irecv(&array[i], 1, MPI_INT, i, i, MPI_COMM_WORLD, &recv_request);
//cout << "<- Process 0 received " << array[i] << " from Process " << i << endl;
}
}
MPI_Finalize();
if(curr_proc == 0)
{
for(int i = 1; i < total_proc; i++)
array[0] = array[0] + array[i];
cout << "Sum is " << array[0] << endl;
}
return 0;
}
int summation(int u, int l)
{
int result = 0;
for(int i = l; i <= u; i++)
result = result + i;
return result;
}
输出:
** Partial Sum From Process 0 is 5050
** Partial Sum From Process 3 is 35050
-> Process 3 sent 35050 to Process 0
<- Process 0 received 35050 from Process 3
** Partial Sum From Process 4 is 45050
-> Process 4 sent 45050 to Process 0
<- Process 0 received 45050 from Process 4
** Partial Sum From Process 5 is 55050
-> Process 5 sent 55050 to Process 0
<- Process 0 received 55050 from Process 5
** Partial Sum From Process 6 is 65050
** Partial Sum From Process 8 is 85050
-> Process 8 sent 85050 to Process 0
<- Process 0 received 85050 from Process 8
-> Process 6 sent 65050 to Process 0
** Partial Sum From Process 1 is 15050
** Partial Sum From Process 2 is 25050
-> Process 2 sent 25050 to Process 0
<- Process 0 received 25050 from Process 2
<- Process 0 received 65050 from Process 6
** Partial Sum From Process 7 is 75050
-> Process 1 sent 15050 to Process 0
<- Process 0 received 15050 from Process 1
-> Process 7 sent 75050 to Process 0
<- Process 0 received 75050 from Process 7
** Partial Sum From Process 9 is 95050
-> Process 9 sent 95050 to Process 0
<- Process 0 received 95050 from Process 9
Sum is -1544080023
打印阵列的内容:
5050
536870912
-1579286148
-268433415
501219332
32666
501222192
32666
1
0
我想知道造成这种情况的原因。
如果在调用MPI_Finalize之前打印数组,它可以正常工作。
答案 0 :(得分:2)
你的计划最重要的缺陷就是你如何划分工作。在MPI中,每个进程都在执行主函数。因此,如果您希望它们协作构建结果,则必须确保所有进程都执行summation
函数。
您不需要for循环。每个进程都分别执行main。它们只有不同的curr_proc
值,您可以根据它计算他们必须执行的作业的哪个部分:
/* assigning jobs to processors */
int chunk_size = 1000 / total_proc;
lowerlimit = curr_proc * chunk_size;
upperlimit = (curr_proc+1) * chunk_size;
partial_sum = summation(upperlimit, lowerlimit);
然后,主进程如何接收所有其他进程的部分和是不正确的。
curr_proc
)从0开始到MPI_Comm_size
输出值(total_proc-1
)。MPI_Isend
和MPI_recv
,但您不会等到这些请求完成后再等。您应该使用MPI_Waitall
来实现此目的。正确的版本如下:
if( curr_proc == 0 ) {
// master process receives all data
for( int i = 1; i < total_proc; i++ )
MPI_Recv( &array[i], MPI_INT, 1, i, 0, MPI_COMM_WORLD );
} else {
// other processes send data to the master
MPI_Send( &partial_sum, MPI_INT, 1, 0, 0, MPI_COMM_WORLD );
}
这种一对一的通信模式称为 gather 。在MPI中,有一个功能已经执行此功能:MPI_Gather
。
最后,您打算执行的操作称为 reduction :获取给定数量的数值并通过连续执行单个操作(在您的情况下为总和)生成单个输出值。在MPI中,有一个函数也可以这样做:MPI_Reduce
。
我强烈建议您在尝试制作自己之前some basic guided exercises。 MPI一开始很难理解。建立良好的基础对于您以后能够增加复杂性至关重要。 hands on tutorial也是开始使用MPI的好方法。
编辑:忘记提及您不需要按资源数量(total_proc
)强制执行问题大小的均衡(在本例中为1000)。根据具体情况,您可以将余数分配给单个流程:
chunk_size = 1000 / total_proc;
if( curr_proc == 0 )
chunk_size += 1000 % total_proc;
或者尽可能地平衡它:
int remainder = curr_proc < ( 1000 % proc )? 1 : 0;
lowerlimit = curr_proc * chunk_size /* as usual */
+ curr_proc; /* cumulative remainder */
upperlimit = (curr_proc + 1) * chunk_size /* as usual */
+ remainder; /* curr_proc remainder */
第二种情况,负载不平衡将高达1,而在第一种情况下,负载不平衡在最坏的情况下可以达到total_proc-1
。
答案 1 :(得分:0)
您只是初始化array[i]
,即与curr_proc
ID对应的元素。该数组中的其他元素将是未初始化的,从而产生随机值。在发送/接收打印循环中,您只能访问已初始化的元素。
我不熟悉MPI,所以我猜,但你可能想在调用array
之前分配MPI_Init
。或者在流程0上调用MPI_Receive
,而不是每个人。