我有一个与此类似的数据框
import pandas as pd
df = pd.DataFrame([['1','3','1','2','3','1','2','2','1','1'], ['ONE','TWO','ONE','ONE','ONE','TWO','ONE','TWO','ONE','THREE']]).T
df.columns = [['age','data']]
print(df) #printing dataframe.
我在其上执行了groupby函数以获得所需的输出。
df['COUNTER'] =1 #initially, set that counter to 1.
group_data = df.groupby(['age','data'])['COUNTER'].sum() #sum function
print(group_data)
现在我想用matplot lib绘制出来。请帮帮我..我无法想象如何开始和做什么。 我想使用计数器值和类似于条形图的东西进行绘图
答案 0 :(得分:5)
尝试:
group_data = group_data.reset_index()
为了摆脱groupby()
为您创建的多重索引。
您的print(group_data)
会告诉您:
In [24]: group_data = df.groupby(['age','data'])['COUNTER'].sum() #sum function
In [25]: print(group_data)
age data
1 ONE 3
THREE 1
TWO 1
2 ONE 2
TWO 1
3 ONE 1
TWO 1
Name: COUNTER, dtype: int64
然而,重置会简化'新指数:
In [26]: group_data = group_data.reset_index()
In [27]: group_data
Out[27]:
age data COUNTER
0 1 ONE 3
1 1 THREE 1
2 1 TWO 1
3 2 ONE 2
4 2 TWO 1
5 3 ONE 1
6 3 TWO 1
然后,根据您想要绘制的内容,您可能需要查看Matplotlib docs
修改强>
我现在更仔细地阅读,你想创建一个' bar'图表。
如果是这种情况,那么我会退一步,不在groupby结果上使用reset_index()
。相反,试试这个:
In [46]: fig = group_data.plot.bar()
In [47]: fig.figure.show()
我希望这会有所帮助
答案 1 :(得分:1)
试试这个:
# This is a great tool to add plots to jupyter notebook
% matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
# Params get plot bigger
plt.rcParams["axes.labelsize"] = 16
plt.rcParams["xtick.labelsize"] = 14
plt.rcParams["ytick.labelsize"] = 14
plt.rcParams["legend.fontsize"] = 12
plt.rcParams["figure.figsize"] = [15, 7]
df = pd.DataFrame([['1','3','1','2','3','1','2','2','1','1'], ['ONE','TWO','ONE','ONE','ONE','TWO','ONE','TWO','ONE','THREE']]).T
df.columns = [['age','data']]
df['COUNTER'] = 1
group_data = df.groupby(['age','data']).sum()[['COUNTER']].plot.bar(rot = 90) # If you want to rotate labels from x axis
_ = group_data.set(xlabel = 'xlabel', ylabel = 'ylabel'), group_data.legend(['Legend']) # you can add labels and legend