我有像这样的数据集
import pandas as pd
df = pd.DataFrame({'word': ['abs e learning ', 'abs e-learning', 'abs e&learning', 'abs elearning']})
我想要
word
0 abs elearning
1 abs elearning
2 abs elearning
3 abs elearning
我吼叫
re_map = {r'\be learning\b': 'elearning', r'\be-learning\b': 'elearning', r'\be&learning\b': 'elearning'}
import re
for r, map in re_map.items():
df['word'] = re.sub(r, map, df['word'])
和错误
TypeError Traceback (most recent call last)
<ipython-input-42-fbf00d9a0cba> in <module>()
3 s = df['word']
4 for r, map in re_map.items():
----> 5 df['word'] = re.sub(r, map, df['word'])
C:\Users\Edward\Anaconda3\lib\re.py in sub(pattern, repl, string, count, flags)
180 a callable, it's passed the match object and must return
181 a replacement string to be used."""
--> 182 return _compile(pattern, flags).sub(repl, string, count)
183
184 def subn(pattern, repl, string, count=0, flags=0):
TypeError: expected string or bytes-like object
我可以像这样应用str
for r, map in re_map.items():
df['word'] = re.sub(r, map, str(df['word']))
没有错,但我不能按照自己的意愿获得pd.dataFrame
word
0 0 0 0 abs elearning \n1 abs elearning\...\n1 0 0 abs elearning \n1 abs elearning\...\n2 0 0 abs elearning \n1 abs ele...
1 0 0 0 abs elearning \n1 abs elearning\...\n1 0 0 abs elearning \n1 abs elearning\...\n2 0 0 abs elearning \n1 abs ele...
2 0 0 0 abs elearning \n1 abs elearning\...\n1 0 0 abs elearning \n1 abs elearning\...\n2 0 0 abs elearning \n1 abs ele...
3 0 0 0 abs elearning \n1 abs elearning\...\n1 0 0 abs elearning \n1 abs elearning\...\n2 0 0 abs elearning \n1 abs ele...
如何改善它?
答案 0 :(得分:2)
df['word']
是一个列表。转换为字符串只会破坏您的列表。
您需要对每个成员应用正则表达式:
for r, map in re_map.items():
df['word'] = [re.sub(r, map, e) for e in df['word']]:
没有列表理解的经典替代方法:
for r, map in re_map.items():
d = df['word']
for i,e in enumerate(d):
d[i] = re.sub(r, map, e)
顺便说一下,你可以大大简化你的正则表达式列表:
re_map = {r'\be[\-& ]learning\b': 'elearning'}
通过这样做,你只有一个正则表达式,这成为一个单行:
df['word'] = [re.sub(r'\be[\-& ]learning\b', 'elearning', e) for e in df['word']]:
通过为所有替换预编译正则表达式,甚至可以更快:
theregex = re.compile(r'\be[\-& ]learning\b')
df['word'] = [theregex.sub('elearning', e) for e in df['word']]: