我是tensorflow的初学者,我试图通过这个链接https://pythonprogramming.net/rnn-tensorflow-python-machine-learning-tutorial/向神经网络的代码添加摘要 我收到错误但我不知道出了什么问题? 这是代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/tmp/data",one_hot=True)
n_nodes_hl1=500
n_nodes_hl2=500
n_nodes_hl3=500
n_classes=10
batch_size=100
x=tf.placeholder("float",[None,784])
y=tf.placeholder("float")
def neural_net(data):
hidden_1_layer={"weight":tf.Variable(tf.random_normal([784,n_nodes_hl1])),"bias":tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer={"weight":tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),"bias":tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer={"weight":tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),"bias":tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer={"weight":tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),"bias":tf.Variable(tf.random_normal([n_classes]))}
l1=tf.add(tf.matmul(data,hidden_1_layer["weight"]),hidden_1_layer["bias"])
l1=tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer["weight"]), hidden_2_layer["bias"])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer["weight"]), hidden_3_layer["bias"])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer["weight"])+ output_layer["bias"]
return output
def train_net(x):
prediction=neural_net(x)
cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,y),name='cost')
optimizer=tf.train.AdamOptimizer().minimize(cost)
hm_epoch=3
for value in [x,y,prediction,cost]:
tf.summary.scalar([value.op.name],value)
summaries=tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
summarywriter=tf.summary.FileWriter("layers",sess.graph)
for epoch in range(hm_epoch):
epoch_loss=0
for i in range(int(mnist.train.num_examples/batch_size)):
epoch_x,epoch_y=mnist.train.next_batch(batch_size)
summarywriter.add_summary(sess.run(summaries,feed_dict={x:epoch_x,y:epoch_y}),i)
epoch_loss+=c
print('epoch ',epoch,' completed out of ',hm_epoch," loss ",epoch_loss)
correct=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct,'float'))
print('accuracy ',accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
train_net(x)
这是错误
File "C:/Users/PC-Sara/AppData/Local/Programs/Python/Python35/tf-layers.py", line 69, in <module>
train_net(x)
File "C:/Users/PC-Sara/AppData/Local/Programs/Python/Python35/tf-layers.py", line 46, in train_net
tf.summary.scalar([value.op.name],value)
File "C:\Users\PC-Sara\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\summary\summary.py", line 114, in scalar
name = _clean_tag(name)
File "C:\Users\PC-Sara\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\summary\summary.py", line 86, in _clean_tag
new_name = _INVALID_TAG_CHARACTERS.sub('_', name)
TypeError: expected string or bytes-like object
答案 0 :(得分:0)
tf.summary.scalar
期望名称作为第一个参数,而不是数组。这应该工作:
tf.summary.scalar(value.op.name, value)