我不确定为什么会发生这种情况
>>> df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))
>>> df
A B C
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14
将None
分配给最后一行中的元素,将其转换为NaN NaN NaN
:
>>> df.ix[5,:] = None
>>> df
A B C
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14
5 NaN NaN NaN
将最后一列中的两个元素更改为“nan”
>>> df.ix[:1,2] = 'nan'
>>> df
A B C
0 0 1 nan
1 3 4 nan
2 6 7 8
3 9 10 11
4 12 13 14
5 NaN NaN NaN
现在最后一行变为NaN NaN None
>>> df.ix[5,:] = None
>>> df
A B C
0 0 1 nan
1 3 4 nan
2 6 7 8
3 9 10 11
4 12 13 14
5 NaN NaN None
答案 0 :(得分:3)
这是因为你的dtypes在每次作业后都会被改变:
In [7]: df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))
In [8]: df.dtypes
Out[8]:
A int32
B int32
C int32
dtype: object
In [9]: df.loc[5,:] = None
In [10]: df.dtypes
Out[10]:
A float64
B float64
C float64
dtype: object
In [11]: df.loc[:1,2] = 'nan'
在最后一次分配后,C
列已隐式转换为object
(字符串)dtype:
In [12]: df.dtypes
Out[12]:
A float64
B float64
C object
dtype: object
@ayhan has written very neat answer as a comment:
我认为主要原因是数字列,当你插入无 或者np.nan,它被转换为np.nan以具有一系列类型的float。 对于对象,它接受传递的任何内容(如果是None,则使用None; if np.nan,它使用np.nan - docs)
(c)ayhan
以下是相应的演示:
In [39]: df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))
In [40]: df.loc[4, 'A'] = None
In [41]: df.loc[4, 'C'] = np.nan
In [42]: df
Out[42]:
A B C
0 0.0 1 2.0
1 3.0 4 5.0
2 6.0 7 8.0
3 9.0 10 11.0
4 NaN 13 NaN
In [43]: df.dtypes
Out[43]:
A float64
B int32
C float64
dtype: object
In [44]: df.loc[0, 'C'] = 'a string'
In [45]: df
Out[45]:
A B C
0 0.0 1 a string
1 3.0 4 5
2 6.0 7 8
3 9.0 10 11
4 NaN 13 NaN
In [46]: df.dtypes
Out[46]:
A float64
B int32
C object
dtype: object
现在我们可以将None
和np.nan
同时用于object
dtype:
In [47]: df.loc[1, 'C'] = None
In [48]: df.loc[2, 'C'] = np.nan
In [49]: df
Out[49]:
A B C
0 0.0 1 a string
1 3.0 4 None
2 6.0 7 NaN
3 9.0 10 11
4 NaN 13 NaN
更新:从Pandas 0.20.1 the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers开始。