在pandas数据帧中将元素设置为None

时间:2016-09-11 09:34:55

标签: python pandas dataframe

我不确定为什么会发生这种情况

>>> df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))
>>> df
    A   B   C
0   0   1   2
1   3   4   5
2   6   7   8
3   9  10  11
4  12  13  14

None分配给最后一行中的元素,将其转换为NaN NaN NaN

>>> df.ix[5,:] = None
>>> df
    A   B   C
0   0   1   2
1   3   4   5
2   6   7   8
3   9  10  11
4  12  13  14
5 NaN NaN NaN

将最后一列中的两个元素更改为“nan”

>>> df.ix[:1,2] = 'nan'
>>> df
    A   B    C
0   0   1  nan
1   3   4  nan
2   6   7    8
3   9  10   11
4  12  13   14
5 NaN NaN  NaN

现在最后一行变为NaN NaN None

>>> df.ix[5,:] = None
>>> df
    A   B     C
0   0   1   nan
1   3   4   nan
2   6   7     8
3   9  10    11
4  12  13    14
5 NaN NaN  None

1 个答案:

答案 0 :(得分:3)

这是因为你的dtypes在每次作业后都会被改变:

In [7]: df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))

In [8]: df.dtypes
Out[8]:
A    int32
B    int32
C    int32
dtype: object

In [9]: df.loc[5,:] = None

In [10]: df.dtypes
Out[10]:
A    float64
B    float64
C    float64
dtype: object

In [11]: df.loc[:1,2] = 'nan'

在最后一次分配后,C列已隐式转换为object(字符串)dtype:

In [12]: df.dtypes
Out[12]:
A    float64
B    float64
C     object
dtype: object

@ayhan has written very neat answer as a comment

  

我认为主要原因是数字列,当你插入无   或者np.nan,它被转换为np.nan以具有一系列类型的float。   对于对象,它接受传递的任何内容(如果是None,则使用None; if   np.nan,它使用np.nan -   docs

     

(c)ayhan

以下是相应的演示:

In [39]: df = pd.DataFrame(np.arange(15).reshape(5,3),columns=list('ABC'))

In [40]: df.loc[4, 'A'] = None

In [41]: df.loc[4, 'C'] = np.nan

In [42]: df
Out[42]:
     A   B     C
0  0.0   1   2.0
1  3.0   4   5.0
2  6.0   7   8.0
3  9.0  10  11.0
4  NaN  13   NaN

In [43]: df.dtypes
Out[43]:
A    float64
B      int32
C    float64
dtype: object

In [44]: df.loc[0, 'C'] = 'a string'

In [45]: df
Out[45]:
     A   B         C
0  0.0   1  a string
1  3.0   4         5
2  6.0   7         8
3  9.0  10        11
4  NaN  13       NaN

In [46]: df.dtypes
Out[46]:
A    float64
B      int32
C     object
dtype: object

现在我们可以将Nonenp.nan同时用于object dtype:

In [47]: df.loc[1, 'C'] = None

In [48]: df.loc[2, 'C'] = np.nan

In [49]: df
Out[49]:
     A   B         C
0  0.0   1  a string
1  3.0   4      None
2  6.0   7       NaN
3  9.0  10        11
4  NaN  13       NaN

更新:从Pandas 0.20.1 the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers开始。