多项式拉格朗日函数得到正确的系数

时间:2016-09-08 20:03:55

标签: java math statistics polynomials

我的目标是创建一个给定系数的多项式,然后在给出点时评估多项式。然后使用PolynomialFunctionLagrangeForm类重新创建相同的多项式并检索相同的系数。

然而,即使两个多项式具有相同的度数,我也会得到不同的系数。

我的问题是如何获得相同的系数?有没有办法获得所有可能的多项式?

 static double [] points= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
// Create polynomial using PolynomialFunction class 
PolynomialFunction pf = new PolynomialFunction(coeffecient); 
System.out.println("-------------------Encoding------------------ \nPolynomial degree: "+pf.degree());
System.out.println("Polynomial: "+pf);
System.out.println("Coffecients: ");
System.out.println(Arrays.toString(pf.getCoefficients()));
evaluatePolynomial(pf, points);
PolynomialFunctionLagrangeForm LF = new PolynomialFunctionLagrangeForm(points,polynomial_values);
System.out.print("-------------------Decoding------------------ \nDegree of     Lagrange polynomial:");
System.out.println(LF.degree());
System.out.println("Polynomial: "+LF);
System.out.println("Coffecient of Lagrange polynomial:");
System.out.println(Arrays.toString(LF.getCoefficients()));

输出:

-------------------Encoding------------------ 
Polynomial degree: 15
Polynomial: 40.0 x - 53.0 x^2 - 8.0 x^3 - 29.0 x^4 + 99.0 x^5 + 71.0 x^6 -   86.0 x^7 + 127.0 x^8 + 35.0 x^9 + 14.0 x^10 - 53.0 x^11 + 121.0 x^12 - x^13 + 22.0 x^14 - 27.0 x^15
Coffecients: 
[0.0, 40.0, -53.0, -8.0, -29.0, 99.0, 71.0, -86.0, 127.0, 35.0, 14.0, -53.0, 121.0, -1.0, 22.0, -27.0]
-------------------Decoding------------------ 
Degree of Lagrange polynomial:15
Polynomial:    org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm@5f150435
Coffecient of Lagrange polynomial:
[241664.0, -196608.0, 819200.0, -360448.0, 24576.0, -81920.0, 24576.0, -256.0, 640.0, -28.0, 18.0, -52.921875, 121.021484375, -1.000274658203125, 22.000003814697266, -27.000000070780516]

更新

我应该坚持以下几点

 points= {34121,51152,59804,40922,41678,33985,55244,61576,41866,37365,63178,45530,52928,35006,34671,43212};

 P(x)= 37.0 + 79.0 x + 95.0 x^2 - 118.0 x^3 + 66.0 x^4 - 47.0 x^5 - 64.0 x^6 + 77.0 x^7 + 7.0 x^8 + 113.0 x^9 - 81.0 x^10 + 36.0 x^11 - 33.0 x^12 + 7.0 x^13 - 91.0 x^14 + 80.0 x^15

在多项式上进行评估后的结果

 (points, P(points))= {(34121,7.914104306379832E69),(51152,3.435734636341671E72),(59804,3.5812547774323177E73),(40922,1.209012191911663E71),(41678, 1.5910403312602316E71),(33985,7.453917205941376E69 ),(55244, 1.0898275780150622E73),(61576,5.5495027051432293E73),(41866,1.702159385167097E71),(37365,3.0906623702059587E70),(63178,8.157747712897765E73),(45530,5.991614888661553E71),(52928,5.732748723914476E72),(35006,1.1620189256906411E70),(34671,1.005938101921578E70),(43212,2.736176231116627E71)};
然而,发送(点,P(点))拉格朗日插值会产生错误的系数:

 -7.125711012263528E27, -1.7102522454360707E26, -3.9998444109905895E24, -1.1156590815779537E23, -1.3650590614545068E21, -8.762203435012037E19, 1.36909428672063078E18, -1.125899906842624E17, 7.0368744177664E14, -2.3089744183296E13, 3.95136991232E11, -3.3554432E9, 1.572864E7, -110592.0, 192.0, 79.38.

任何建议的解决方案?

1 个答案:

答案 0 :(得分:2)

你的例子的问题是,当你在某些点(大多数是较大的点)进行评估时,多项式会产生非常大的值,而其他点会产生非常小的值。由于您使用具有固定位深度的数值数据类型,因此浮点精度会导致零周围的细节丢失。

如果检查拉格朗日多项式的结果,您将看到高阶系数匹配。这些是负责大值的系数。如果你绘制这个多项式,你几乎看不出差别,因为错误的低阶系数引入了一个非常小的误差(与大规模相比)。

为了解决这个问题,您应该输入产生较小动态范围的点。满足条件的哪些点取决于输入多项式。作为一般经验法则,对于大多数多项式,接近零的值应该是正确的。