首先,抱歉我的英语不好。按照我的问题,在Bowyer-Watson算法中,我们必须找到一个超三角形环绕所有点。但是我们如何计算超三角形的3个顶点的协调器(x,y)?任何人都有这个问题吗?非常感谢。
答案 0 :(得分:0)
我没有这方面的证据,但首先想到的是获得convex hull点数的
1. Get the convex hull of the group of points.
2. Initialize the variable smallest = infinity.
3. For each point P in convex hull do the following:
Find the point farthest away from P call it Q.
Set N1 = point to the left of P (counter-clockwise along convex hull).
N2 = point to the right of P (clockwise along convex hull).
L1 = line that intersects Q and is perpendicular to the line PQ.
L2 = line that intersects P and N1.
L3 = line that intersects P and N2.
A = area of the triangle thats formed by the intersections of L1,L2,L3.
If A < smallest, then set smallest = A.
4. Return smallest
这当然会返回一个不太有用的数字,所以你可以做一些像创建三角形类的东西
class Triangle{
Point p1;
Point p2;
Point p3;
double Area;
//etc...
}
并将smallest
改为喜欢triangle.area
或类似内容,以便最终跟踪这些点。